Friedrich-Loeffler-Institut für Medizinische Mikrobiologie
Refine
Year of publication
Document Type
- Article (38)
- Doctoral Thesis (22)
Has Fulltext
- yes (60)
Is part of the Bibliography
- no (60)
Keywords
- - (26)
- Burkholderia pseudomallei (5)
- Burkholderia (4)
- MRSA (4)
- melioidosis (4)
- Germany (3)
- Makrophage (3)
- Virulenz (3)
- antimicrobial resistance (3)
- coagulase-negative staphylococci (3)
Institute
Publisher
- MDPI (20)
- Frontiers Media S.A. (11)
- Wiley (2)
- American Society for Microbiology (ASM) (1)
- Elsevier (1)
- S. Karger AG (1)
- Taylor & Francis (1)
In this study, we characterized a Klebsiella pneumoniae strain in a patient with shrapnel hip injury, which resulted in multiple phenotypic changes, including the formation of a small colony variant (SCV) phenotype. Although already described since the 1960s, there is little knowledge about SCV phenotypes in Enterobacteriaceae. The formation of SCVs has been recognized as a bacterial strategy to evade host immune responses and compromise the efficacy of antimicrobial therapies, leading to persistent and recurrent courses of infections. In this case, 14 isolates with different resisto- and morpho-types were distinguished from the patient’s urine and tissue samples. Whole genome sequencing revealed that all isolates were clonally identical belonging to the K. pneumoniae high-risk sequence type 147. Subculturing the SCV colonies consistently resulted in the reappearance of the initial SCV phenotype and three stable normal-sized phenotypes with distinct morphological characteristics. Additionally, an increase in resistance was observed over time in isolates that shared the same colony appearance. Our findings highlight the complexity of bacterial behavior by revealing a case of phenotypic “hyper-splitting” in a K. pneumoniae SCV and its potential clinical significance.
A New Laboratory Workflow Integrating the Free Light Chains Kappa Quotient into Routine CSF Analysis
(2022)
We performed this cohort study to test whether further analysis of intrathecal inflammation can be omitted if the free light chain kappa (FLCκ) quotient is within the reference range in the corresponding quotient diagram. FLCκ concentrations were measured in serum and cerebrospinal fluid (CSF) samples. The intrathecal fraction (IF) of FLCκ was calculated in relation to the hyperbolic reference range. 679 patient samples were used as a discovery cohort (DC). The sensitivity and negative predictive value (NPV) of the FLCκ-IF for the detection of an intrathecal humoral immune response (CSF-specific OCB and/or IF IgG/A/M > 0%) was determined. Based on these data, a diagnostic algorithm was developed and prospectively validated in an independent validation cohort (VC, n = 278). The sensitivity of the FLCκ-IF was 98% in the DC and 97% in the VC with a corresponding NPV of 99%. The use of the FLCκ-IF as a first line analysis would have reduced the Ig and OCB analysis by 62% in the DC and 74% in the VC. The absence of a FLCκ-IF predicts the absence of a humoral intrathecal immune response with a very high NPV of 99%. Thus, integration of our proposed algorithm into routine CSF laboratory analysis could help to reduce analytical efforts.
Global and even national genome surveillance approaches do not provide the resolution necessary for rapid and accurate direct response by local public health authorities. Hence, a regional network of microbiological laboratories in collaboration with the health departments of all districts of the German federal state of Mecklenburg-Western Pomerania (M-V) was formed to investigate the regional molecular epidemiology of circulating SARS-CoV-2 lineages between 11/2020 and 03/2022. More than 4750 samples from all M-V counties were sequenced using Illumina and Nanopore technologies. Overall, 3493 (73.5%) sequences fulfilled quality criteria for time-resolved and/or spatially-resolved maximum likelihood phylogenic analyses and k-mean/ median clustering (KMC). We identified 116 different Pangolin virus lineages that can be assigned to 16 Nextstrain clades. The ten most frequently detected virus lineages belonged to B.1.1.7, AY.122, AY.43, BA.1, B.1.617.2, BA.1.1, AY.9.2, AY.4, P.1 and AY.126. Time-resolved phylogenetic analyses showed the occurrence of virus clades as determined worldwide, but with a substantial delay of one to two months. Further spatio-temporal phylogenetic analyses revealed a regional outbreak of a Gamma variant limited to western M-V counties. Finally, KMC elucidated a successive introduction of the various virus lineages into M-V, possibly triggered by vacation periods with increased (inter-) national travel activities. The COVID-19 pandemic in M-V was shaped by a combination of several SARS-CoV-2 introductions, lockdown measures, restrictive quarantine of patients and the lineage specific replication rate. Complementing global and national surveillance, regional surveillance adds value by providing a higher level of surveillance resolution tailored to local health authorities.
Counting of microbial colonies is a common technique employed in research and diagnostics. To simplify this tedious and time-consuming process, automated systems have been proposed. This study aimed to elucidate the reliability of automated colony counting. We evaluated a commercially available instrument (UVP ColonyDoc-It Imaging Station) in regard to its accuracy and potential time savings. Suspensions of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterococcus faecium, and Candida albicans (n = 20 each) were adjusted to achieve growth of approximately 1,000, 100, 10, and 1 colony per plate, respectively, after overnight incubation on different solid media. Compared with manual counting, each plate was automatically counted by the UVP ColonyDoc-It with and without visual adjustment on a computer display. For all bacterial species and concentrations automatically counted without visual correction, an overall mean difference from manual counts of 59.7%, a proportion of isolates with overestimation/underestimation of colony numbers of 29%/45%, respectively, and only a moderate relationship (R2 = 0.77) with the manual counting were shown. Applying visual correction, the overall mean difference from manual counts was 1.8%, the proportion of isolates with overestimation/underestimation of colony numbers amounted to 2%/42%, respectively, and a strong relationship (R2 = 0.99) with the manual counting was observed. The mean time needed for manual counting compared with automated counting without and with visual correction was 70 s, 30 s, and 104 s, respectively, for bacterial colonies through all concentrations tested. Generally, similar performance regarding accuracy and counting time was observed with C. albicans. In conclusion, fully automatic counting showed low accuracy, especially for plates with very high or very low colony numbers. After visual correction of the automatically generated results, the concordance with manual counts was high; however, there was no advantage in reading time.
IMPORTANCE Colony counting is a widely utilized technique in the field of microbiology. The accuracy and convenience of automated colony counters are essential for research and diagnostics. However, there is only sparse evidence on performance and usefulness of such instruments. This study examined the current state of reliability and practicality of the automated colony counting with an advanced modern system. For this, we thoroughly evaluated a commercially available instrument in terms of its accuracy and counting time required. Our findings indicate that fully automatic counting resulted in low accuracy, particularly for plates with very high or very low colony numbers. Visual correction of the automated results on a computer screen improved concordance with manual counts, but there was no benefit in counting time.
Hand hygiene is a cornerstone of infection prevention. However, few data are available for school children on their knowledge of infectious diseases and their prevention. The aim of the study was to develop and apply a standardized questionnaire for children when visiting primary schools to survey their knowledge about infectious diseases, pathogen transmission and prevention measures. Enrolling thirteen German primary schools, 493 questionnaires for grade three primary school children were included for further analyses, comprising 257 (52.1%) girls and 236 (47.9%) boys with an age range of 8–11 years. Out of 489 children, 91.2% participants indicated that they knew about human-to-human transmissible diseases. Of these, 445 children responded in detail, most frequently mentioning respiratory and gastrointestinal diseases, followed by childhood diseases. Addressing putative hygiene awareness-influencing factors, it was worrisome that more than 40.0% of the children avoided visiting the sanitary facilities at school. Most of the children (82.9%) noted that they did not like to use the sanitary facilities at school because of their uncleanliness and the poor hygienic behavior of their classmates. In conclusion, basic infection awareness exists already in primary school age children. Ideas about the origin and prevention of infections are retrievable, however, this knowledge is not always accurate and adequately contextualized. Since the condition of sanitary facilities has a strong influence on usage behavior, the child’s perspective should be given more consideration in the design and maintenance of sanitary facilities.
Primary and acquired therapy resistance is a major problem in patients with BRAF-mutant melanomas being treated with BRAF and MEK inhibitors (BRAFI, MEKi). Therefore, development of alternative therapy regimes is still required. In this regard, new drug combinations targeting different pathways to induce apoptosis could offer promising alternative approaches. Here, we investigated the combination of proteasome and Kv1.3 potassium channel inhibition on chemo-resistant, BRAF inhibitor-resistant as well as sensitive human melanoma cells. Our experiments demonstrated that all analyzed melanoma cell lines were sensitive to proteasome inhibitor treatment at concentrations that are not toxic to primary human fibroblasts. To further reduce proteasome inhibitor-associated side effects, and to foster apoptosis, potassium channels, which are other targets to induce pro-apoptotic effects in cancer cells, were blocked. In support, combined exposure of melanoma cells to proteasome and Kv1.3 channel inhibitor resulted in synergistic effects and significantly reduced cell viability. On the molecular level, enhanced apoptosis correlated with an increase of intracellular Kv1.3 channels and pro-apoptotic proteins such as Noxa and Bak and a reduction of anti-apoptotic proteins. Thus, use of combined therapeutic strategies triggering different apoptotic pathways may efficiently prevent the outgrowth of drug-resistant and -sensitive BRAF-mutant melanoma cells. In addition, this could be the basis for an alternative approach to treat other tumors expressing mutated BRAF such as non-small-cell lung cancer.
Introduction: The environmental bacterium Burkholderia pseudomallei causes the often fatal and massively underreported infectious disease melioidosis. Antigens inducing protective immunity in experimental models have recently been identified and serodiagnostic tools have been improved. However, further elucidation of the antigenic repertoire of B. pseudomallei during human infection for diagnostic and vaccine purposes is required. The adaptation of B. pseudomallei to very different habitats is reflected by a huge genome and a selective transcriptional response to a variety of conditions. We, therefore, hypothesized that exposure of B. pseudomallei to culture conditions mimicking habitats encountered in the human host might unravel novel antigens that are recognized by melioidosis patients.
Methods and results: In this study, B. pseudomallei was exposed to various stress and growth conditions, including anaerobiosis, acid stress, oxidative stress, iron starvation and osmotic stress. Immunogenic proteins were identified by probing two-dimensional Western blots of B. pseudomallei intracellular and extracellular protein extracts with sera from melioidosis patients and controls and subsequent MALDI-TOF MS. Among B. pseudomallei specific immunogenic signals, 90 % (55/61) of extracellular immunogenic proteins were identified by acid, osmotic or oxidative stress. A total of 84 % (44/52) of intracellular antigens originated from the stationary growth phase, acidic, oxidative and anaerobic conditions. The majority of the extracellular and intracellular protein antigens were identified in only one of the various stress conditions. Sixty-three immunoreactive proteins and an additional 38 candidates from a literature screening were heterologously expressed and subjected to dot blot analysis using melioidosis sera and controls. Our experiments confirmed melioidosis-specific signals in 58 of our immunoproteome candidates. These include 15 antigens with average signal ratios (melioidosis:controls) greater than 10 and another 26 with average ratios greater than 5, including new promising serodiagnostic candidates with a very high signal-to-noise ratio.
Conclusion: Our study shows that a comprehensive B. pseudomallei immunoproteomics approach, using conditions which are likely to be encountered during infection, can identify novel antibody targets previously unrecognized in human melioidosis.
Summary
Roundup® is the brand name for herbicide solutions containing glyphosate, which specifically inhibits the 5‐enolpyruvyl‐shikimate‐3‐phosphate (EPSP) synthase of the shikimate pathway. The inhibition of the EPSP synthase causes plant death because EPSP is required for biosynthesis of aromatic amino acids. Glyphosate also inhibits the growth of archaea, bacteria, Apicomplexa, algae and fungi possessing an EPSP synthase. Here, we have characterized two glyphosate‐resistant bacteria from a Roundup solution. Taxonomic classification revealed that the isolates 1CH1 and 2CH1 are Burkholderia anthina and Burkholderia cenocepacia strains respectively. Both isolates cannot utilize glyphosate as a source of phosphorus and synthesize glyphosate‐sensitive EPSP synthase variants. Burkholderia. anthina 1CH1 and B. cenocepacia 2CH1 tolerate high levels of glyphosate because the herbicide is not taken up by the bacteria. Previously, it has been observed that the exposure of soil bacteria to herbicides like glyphosate promotes the development of antibiotic resistances. Antibiotic sensitivity testing revealed that the only the B. cenocepacia 2CH1 isolate showed increased resistance to a variety of antibiotics. Thus, the adaptation of B. anthina 1CH1 and B. cenocepacia 2CH1 to glyphosate did not generally increase the antibiotic resistance of both bacteria. However, our study confirms the genomic adaptability of bacteria belonging to the genus Burkholderia.
Upon antigen recognition by the T cell receptor (TCR), a complex signaling network orchestrated by protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPs) regulates the transmission of the extracellular signal to the nucleus. The role of the PTPs Src-homology 2 (SH2) domain-containing phosphatase 1 (SHP1, Ptpn6) and Src-homology 2 (SH2) domain-containing phosphatase 2 (SHP2, Ptpn11) have been studied in various cell types including T cells. Whereas SHP1 acts as an essential negative regulator of the proximal steps in T cell signalling, the role of SHP2 in T cell activation is still a matter of debate. Here, we analyzed the role of the constitutively active SHP2-D61Y-mutant in T cell activation using knock-in mice expressing the mutant form Ptpn11D61Y
in T cells. We observed reduced numbers of CD8+ and increased numbers of CD4+ T cells in the bone marrow and spleen of young and aged SHP2-D61Y-mutant mice as well as in Influenza A Virus (IAV)-infected mice compared to controls. In addition, we found elevated frequencies of effector memory CD8+ T cells and an upregulation of the programmed cell death protein 1 (PD-1)-receptor on both CD4+ and CD8+ T cells. Functional analysis of SHP2-D61Y-mutated T cells revealed an induction of late apoptosis/necrosis, a reduced proliferation and altered signaling upon TCR stimulation. However, the ability of D61Y-mutant mice to clear viral infection was not affected. In conclusion, our data indicate an important regulatory role of SHP2 in T cell function, where the effect is determined by the kinetics of SHP2 phosphatase activity and differs in the presence of the permanently active and the temporally regulated phosphatase. Due to interaction of SHP2 with the PD-1-receptor targeting the protein-tyrosine phosphatase might be a valuable tool to enhance T cell activities in immunotherapy.
Melioidosis is a seasonal infectious disease in tropical and subtropical areas caused by the soil bacterium Burkholderia pseudomallei. In many parts of the world, including South West India, most cases of human infections are reported during times of heavy rainfall, but the underlying causes of this phenomenon are not fully understood. India is among the countries with the highest predicted melioidosis burden globally, but there is very little information on the environmental distribution of B. pseudomallei and its determining factors. The present study aimed (i) to investigate the prevalence of B. pseudomallei in soil in South West India, (ii) determine geochemical factors associated with B. pseudomallei presence and (iii) look for potential seasonal patterns of B. pseudomallei soil abundance. Environmental samplings were performed in two regions during the monsoon and post-monsoon season and summer from July 2016 to November 2018. We applied direct quantitative real time PCR (qPCR) together with culture protocols to overcome the insufficient sensitivity of solely culture-based B. pseudomallei detection from soil. A total of 1,704 soil samples from 20 different agricultural sites were screened for the presence of B. pseudomallei. Direct qPCR detected B. pseudomallei in all 20 sites and in 30.2% (517/1,704) of all soil samples, whereas only two samples from two sites were culture-positive. B. pseudomallei DNA-positive samples were negatively associated with the concentration of iron, manganese and nitrogen in a binomial logistic regression model. The highest number of B. pseudomallei-positive samples (42.6%, p < 0.0001) and the highest B. pseudomallei loads in positive samples [median 4.45 × 103 genome equivalents (GE)/g, p < 0.0001] were observed during the monsoon season and eventually declined to 18.9% and a median of 1.47 × 103 GE/g in summer. In conclusion, our study from South West India shows a wide environmental distribution of B. pseudomallei, but also considerable differences in the abundance between sites and within single sites. Our results support the hypothesis that nutrient-depleted habitats promote the presence of B. pseudomallei. Most importantly, the highest B. pseudomallei abundance in soil is seen during the rainy season, when melioidosis cases occur.