Refine
Year of publication
Document Type
- Doctoral Thesis (79)
- Article (12)
Keywords
- ABC-Transporter (11)
- - (10)
- Pharmakokinetik (9)
- P-Glykoprotein (7)
- MRP4 (6)
- Talinolol (5)
- Transportproteine (5)
- Herzinfarkt (4)
- OATP2B1 (4)
- Pharmakologie (4)
Institute
- Institut fĂŒr Pharmakologie (91) (remove)
Organic cation transporter OCT1 is strongly expressed in the sinusoidal membrane of hepatocytes. OCT1 mediates the uptake of weakly basic and cationic compounds from the blood into the liver and may thereby facilitate the first step in hepatic metabolism or excretion of many cationic drugs. OCT1 is a polyspecific transporter and has a very broad spectrum of structurally highly diverse ligands (substrates and inhibitors). The exact transport mechanism and the amino acids involved in polyspecific ligand binding of OCT1 are poorly understood.
The aim of this work was to utilize the polyspecificity to better understand the structure-function relationships of OCT1 and to gain first insights into potential mechanisms conferring the polyspecificity. We followed two strategies, analyzing the effects of variability in both ligand and transporter structure on OCT1 function. The effects of ligand structure were analyzed by comparing uptake and inhibitory potencies of structurally similar drugs of the group of opioids. The effects of transporter structure were analyzed by comparing the effects of variability caused by naturally occurring genetic variants or artificial mutations on OCT1 uptake and inhibition of several substrates. Most importantly, the effects of interspecies variability in transporter structure were analyzed by comparing uptake kinetics between human and mouse OCT1 orthologs. To this end, we used stably or transiently transfected HEK293 cells overexpressing OCT1 and different chimeric and mutant variants thereof.
Focusing on OCT1 ligands, we compared the uptake and inhibitory potencies of structurally similar opioids. Only minor changes of the ligand structure strongly affected the interaction with OCT1. The presence of the ether linkage between C4 and C5 of the morphinan ring was associated with reduced OCT1 inhibitory potencies, while passive membrane permeability was the major negative determinant of OCT1-mediated uptake among structurally highly similar morphinan opioids. Only minor structural changes strongly increased the inhibitory potency by 28-fold from the lowest IC50 of 2004 ”M for oxycodone to 72 ”M for morphine. Additional removal of the ether linkage between C4-C5 increased the inhibitory potency by a total of 313-fold to the lowest IC50 of 6 ”M for dextrorphan. Consequently, our data demonstrates that despite its polyspecificity, OCT1-mediated uptake and inhibition of this uptake is still somewhat very specific.
Focusing on OCT1 protein structure, we first analyzed the effects of variability caused by naturally occurring genetic variants on OCT1 uptake and inhibition. OCT1 transport was strongly affected by OCT1 genetic variants and these effects were often substrate-specific. Correlation of these effects revealed several substrates that were similarly affected by the variants and may therefore be suggested to share similar or overlapping binding sites in OCT1. In addition, the effects of the genetic variants OCT1*2 and OCT1*3 on different substrates correlated well which may suggest that the structural variability caused by these two variants similarly affects substrate uptake. OCT1 genetic variants also affected the inhibition of OCT1, with both substrate and genotype-specific differences. Ranitidine inhibited the uptake of several substrates, among them the clinically relevant drugs metformin and morphine. Moreover, the inhibition was more potent (about 2-fold) on the uptake mediated by the common genetic variant OCT1*2 than on the uptake mediated by the reference OCT1*1.
Second, we analyzed the effects of artificial mutations of key amino acids. Tyr222 and Asp475 in rat OCT1 had strongly substrate-specific and also species-specific effects on both OCT1-mediated uptake and inhibition. Mutation of these amino acids strongly decreased OCT1-mediated uptake, which further underscored an important role especially of Asp475. Interestingly, despite a proposed essential role of this amino acid, we observed Asp475-independent transport. This transport was observed in mouse, but not in human OCT1 and was substrate-specific. TMH10 was identified to be involved in determining the Asp475-independent uptake of mouse OCT1.
Finally and most importantly, we analyzed the effects of sequence differences between human and mouse OCT1 on the transport kinetics of several OCT1 substrates. The transport kinetics differed strongly between human and mouse OCT1 orthologs. These differences were substrate-specific and affected both the affinity (KM) and capacity (vmax) of transport. Human OCT1 had an 8-fold higher capacity of trospium transport, while mouse OCT1 had an 8-fold higher capacity of fenoterol transport. Furthermore, mouse OCT1 had a 5-fold higher affinity for metformin transport compared to human OCT1. The difference between Phe32 in human and Leu32 in mouse OCT1 in TMH1 was identified to confer a higher capacity of transport by human compared to mouse OCT1, while the difference between Cys36 in human and Tyr36 in mouse OCT1 in TMH1 was identified to confer a higher capacity of transport by mouse compared to human OCT1. Furthermore, Leu155 in human OCT1, corresponding to Val156 in mouse OCT1 in TMH2, in concert with TMH3 were identified to confer the differences in affinity for metformin transport between the species.
It may be speculated that ligand binding in OCT1 involves a core binding region that includes Asp474/475 and that polyspecific ligand binding is enabled by providing further binding partners (different amino acids) in more peripheral regions that different ligands can selectively interact with. This mechanism may also be a first step in explaining the substrate-specific effects of genetic variants with clinical relevance. Based on our findings, these âpolyspecificity regionsâ may include TMH1, TMH2, and TMH3. Further analyses are warranted to characterize and narrow down these regions to unravel the structure-function relationships and with that the polyspecificity of OCT1.
To summarize, variability in both ligand and transporter structure strongly affected OCT1 function and we were able to identify ligand structures that affect inhibitory potency and protein structures that confer species-specific differences in OCT1 transport. This work emphasizes again the complexity of OCT1 transport and structure-function relationships. We also showed that, in spite of the difficulties for experimental analysis and data interpretation that arise from the polyspecific nature of OCT1, polyspecificity can also be used as a tool to better understand the structure-function relationships of this transporter.
Abomasal emptying rate of diarrhoeic and healthy suckling calves fed with oral rehydration solutions
Abstract
The aim of the study was to determine the abomasal emptying rate (AER) of calves suffering from naturally occurring diarrhoea compared with that of healthy calves. Furthermore, the effects of an oral rehydration solution (ORS) mixed into milk replacer on the AER were determined. Acetaminophen absorption test (APAT) was performed to estimate the AER. Sixty HolsteinâFrisian calves (age < 14 days) were included in the study and divided into groups as follows: healthy calves (H; n = 16), healthy calves fed with ORS (HORS; n = 14), diarrhoeic calves (D; n = 15) and diarrhoeic calves fed with ORS (DORS; n = 15). For the APAT, the calves were fed 2 L of milk replacer containing 50 mg acetaminophen (AP)/kg body weight. Venous blood samples were collected before and after milk replacer and AP intake in 30â60 min intervals for 12 hr. During the APAT, no significant differences in median maximum acetaminophen concentration (Cmax) were observed among all groups. Time to reach maximum acetaminophen concentration (Tmax) in DORS (median 390 min, 25/75 quartiles: 300/480 min) was significantly higher compared with that in H (median: 270 min 25/75 quartiles: 210/315 min) and HORS (median: 300 min (25/75 quartiles: 240/360 min). Nonâlinear regression revealed that the calculated abomasal halfâlife (AP t1/2) tended to be delayed in DORS (median: 652 min, 25/75 quartiles: 445/795 min, p = .10). The area under the AP curve values (AUC) from 0 to 120 min and 0 to 240 min of the observation period were significantly higher in H than D and DORS. In conclusion, significant differences in the AER indices reflected delayed abomasal emptying in diarrhoeic calves. Furthermore, the hypertonic ORS tended to have an additive delaying impact on the AER, which needs attention for the feeding management of diarrhoeic calves.
Neurosteroids, comprising pregnane, androstane, and sulfated steroids can alter neuronal excitability through interaction with ligand-gated ion channels and other receptors and have therefore a therapeutic potential in several brain disorders. They can be formed in brain cells or are synthesized by an endocrine gland and reach the brain by penetrating the bloodâbrain barrier (BBB). Especially sulfated steroids such as pregnenolone sulfate (PregS) and dehydroepiandrosterone sulfate (DHEAS) depend on transporter proteins to cross membranes. In this review, we discuss the involvement of ATP-binding cassette (ABC)- and solute carrier (SLC)-type membrane proteins in the transport of these compounds at the BBB and in the choroid plexus (CP), but also in the secretion from neurons and glial cells. Among the ABC transporters, especially BCRP (ABCG2) and several MRP/ABCC subfamily members (MRP1, MRP4, MRP8) are expressed in the brain and known to efflux conjugated steroids. Furthermore, several SLC transporters have been shown to mediate cellular uptake of steroid sulfates. These include members of the OATP/SLCO subfamily, namely OATP1A2 and OATP2B1, as well as OAT3 (SLC22A3), which have been reported to be expressed at the BBB, in the CP and in part in neurons. Furthermore, a role of the organic solute transporter OSTα-OSTÎČ (SLC51A/B) in brain DHEAS/PregS homeostasis has been proposed. This transporter was reported to be localized especially in steroidogenic cells of the cerebellum and hippocampus. To date, the impact of transporters on neurosteroid homeostasis is still poorly understood. Further insights are desirable also with regard to the therapeutic potential of these compounds.
Background: Impaired vascular compliance is associated with cardiovascular mortality. The effects of heart rate on vascular compliance are unclear. Therefore, we characterized effects of heart rate reduction (HRR) by I(f) current inhibition on aortic compliance and underlying molecular mechanisms in apolipoprotein E-deficient (ApoE<sup>â</sup>/<sup>â</sup>) mice. Methods: ApoE<sup>â</sup>/<sup>â</sup> mice fed a high-cholesterol diet and wild-type (WT) mice were treated with ivabradine (20 mg/kg/d) or vehicle for 6 weeks. Compliance of the ascending aorta was evaluated by MRI. Results: Ivabradine reduced heart rate by 113 ± 31 bpm (âŒ19%) in WT mice and by 133 ± 6 bpm (âŒ23%) in ApoE<sup>â</sup>/<sup>â</sup> mice. Compared to WT controls, ApoE<sup>â</sup>/<sup>â</sup> mice exhibited reduced distensibility and circumferential strain. HRR by ivabradine increased distensibility and circumferential strain in ApoE<sup>â</sup>/<sup>â</sup> mice but did not affect both parameters in WT mice. Ivabradine reduced aortic protein and mRNA expression of the angiotensin II type 1 (AT1) receptor and reduced rac1-GTPase activity in ApoE<sup>â</sup>/<sup>â</sup> mice. Moreover, membrane translocation of p47<sup>phox</sup> was inhibited. In ApoE<sup>â</sup>/<sup>â</sup> mice, HRR induced anti-inflammatory effects by reduction of aortic mRNA expression of IL-6, TNF-alpha and TGF-beta. Conclusion: HRR by ivabradine improves vascular compliance in ApoE<sup>â</sup>/<sup>â</sup> mice. Contributing mechanisms include downregulation of the AT1 receptor, attenuation of oxidative stress and modulation of inflammatory cytokine expression.
Background: Chronic kidney disease (CKD) and low serum total testosterone (TT) concentrations are independent predictors of mortality risk in the general population, but their combined potential for improved mortality risk stratification is unknown. Methods: We used data of 1,822 men from the population-based Study of Health in Pomerania followed- up for 9.9 years (median). The direct effects of kidney dysfunction (estimated glomerular filtration rate <60 ml/min/ 1.73 m<sup>2</sup>), albuminuria (urinary albumin-creatinine ratio â§2.5 mg/mmol) and their combination (CKD) on all-cause and cardiovascular mortality were analyzed using multivariable Cox regression models. Serum TT concentrations below the age-specific 10th percentile (by decades) were considered low and were used for further risk stratification. Results: Kidney dysfunction (hazard ratio, HR, 1.40; 95% confidence interval, CI, 1.02â1.92), albuminuria (HR, 1.38; 95% CI, 1.06â1.79), and CKD (HR, 1.42; 95% CI, 1.09â1.84) were associated with increased all-cause mortality risk, while only kidney dysfunction (HR, 2.01; 95% CI, 1.21â3.34) was associated with increased cardiovascular mortality risk after multivariable adjustment. Men with kidney dysfunction and low TT concentrations were identified as high-risk individuals showing a more than 2-fold increased all-cause mortality risk (HR, 2.52; 95% CI, 1.08â5.85). Added to multivariable models, nonsignificant interaction terms suggest that kidney dysfunction and low TT are primarily additive rather than synergistic mortality risk factors. Conclusion: In the case of early loss of kidney function, measured TT concentrations might help to detect high-risk individuals for potential therapeutic interventions and to improve mortality risk assessment and outcome.