Refine
Year of publication
Document Type
- Doctoral Thesis (146)
- Article (44)
Is part of the Bibliography
- no (190)
Keywords
- - (39)
- Staphylococcus aureus (18)
- proteomics (13)
- Massenspektrometrie (9)
- Proteomanalyse (8)
- Virologie (8)
- Bakterien (7)
- Herpesvirus (7)
- Virulenz (7)
- Bacillus subtilis (6)
- Herpesvirus suis (6)
- PrV (6)
- Proteomics (6)
- Zoonose (6)
- herpesvirus (6)
- Herpesviren (5)
- Pestivirus (5)
- mass spectrometry (5)
- Arxula adeninivorans (4)
- Aviäre Influenza (4)
- Heubacillus (4)
- Immunologie (4)
- Influenza-A-Virus (4)
- Interferon (4)
- MRSA (4)
- Molekulare Virologie (4)
- Pathogenität (4)
- Proteom (4)
- Pseudorabies Virus (4)
- Quantifizierung (4)
- Tollwut (4)
- biofilm (4)
- metaproteomics (4)
- pseudorabies virus (4)
- transcriptomics (4)
- Anpassung (3)
- Degradation (3)
- Geflügel (3)
- Genexpression (3)
- Hämagglutinin (3)
- Konfokale Mikroskopie (3)
- LC-MS (3)
- Laccase (3)
- MALDI-MS (3)
- Metaproteomics (3)
- Nuclear Egress (3)
- Phosphorylierung (3)
- Streptococcus pneumoniae (3)
- Virulenzfaktor (3)
- Vogelgrippe (3)
- adaptation (3)
- autoinflammation (3)
- flux analysis (3)
- membrane proteins (3)
- microbiome (3)
- osmotic stress adaptation (3)
- polyhydroxybutyrate (PHB) (3)
- proline (3)
- 2D PAGE (2)
- Aeromonas salmonicida (2)
- African swine fever virus (2)
- Antibiotics (2)
- Apoptosis (2)
- Bacillus (2)
- Biofilm (2)
- Biosensor (2)
- Biotechnologie (2)
- Capsid (2)
- Coxiella burnetii (2)
- Cupriavidus basilensis (2)
- Elektrospray-Ionisation (2)
- Endokrin wirksamer Stoff (2)
- Enzym (2)
- Epidemiologie (2)
- FMDV (2)
- Feldmaus (2)
- Flavivirus (2)
- Fluoreszenzmikroskopie (2)
- Glykoprotein H (2)
- Hefeartige Pilze (2)
- Hemagglutinin (2)
- Impfstoff (2)
- Isomerisierungsreaktion (2)
- KHV (2)
- Kernhülle (2)
- Kuhpocken (2)
- Lyssavirus (2)
- Membranfusion (2)
- Metabolomics (2)
- Microarray (2)
- Mikrobiologie (2)
- Molekularbiologie (2)
- Monoklonaler Antikörper (2)
- Morphogenese (2)
- NS1 (2)
- Newcastle Disease (2)
- Newcastle-Krankheit (2)
- Nuclear Egress Complex (2)
- Phytase (2)
- Plasmamembran (2)
- Protein-Protein-Interaktion (2)
- Proteine (2)
- Proteinquantifizierung (2)
- Proteolyse (2)
- Pseudomonas putida (2)
- Regenbogenforelle (2)
- Rekombinantes Protein (2)
- SILAC (2)
- Sequencing (2)
- Sequenzanalyse (2)
- Sequenzanalyse <Chemie> (2)
- Spektrenbibliothek (2)
- T-Lymphozyt (2)
- Tandem-Massenspektrometrie (2)
- Tollwutvirus (2)
- Toxizitätstest (2)
- Toxoplasma gondii (2)
- Transcriptomics (2)
- Vakzine (2)
- Vesikel (2)
- Virology (2)
- Virus (2)
- Virus-Eintritt (2)
- Virusinfektion (2)
- W-Protein (2)
- Zoonoses (2)
- bank vole (2)
- biotechnology (2)
- gene expression (2)
- generelle Stressantwort (2)
- laccase (2)
- live-cell imaging (2)
- membrane fusion (2)
- metabolomics (2)
- metagenomics (2)
- microbial diversity (2)
- molecular epidemiology (2)
- molekulare Epidemiologie (2)
- nuclear egress (2)
- pUL34 (2)
- proteasome (2)
- proteome (2)
- transcriptome (2)
- virology (2)
- virus entry (2)
- 1,4-naphthoquinones (1)
- 16S rRNA gene-sequencing (1)
- 16S sequencing (1)
- 18S rRNA (1)
- 2D-Gelelektrophorese (1)
- 4-Hydroxycoumarin (1)
- <i>Babesia</i> (1)
- <i>Clostridiodes difficile</i> (1)
- <i>Enterobacter</i> (1)
- <i>S. aureus</i> (1)
- <i>Streptococcus pneumoniae</i> (1)
- A/H5N1 Influenza (1)
- ADGRE1 (1)
- ASFV (1)
- Abiraterone (1)
- Adaptation (1)
- Aerobe Bakterien (1)
- Aeromonas (1)
- Affinitätschromatographie (1)
- Afrikanische Schweinepest (1)
- Afrikanische Schweinepest Virus (1)
- Afrikanisches Schweinepest-Virus (1)
- Allgemeine Mikrobiologie (1)
- Alternative Translation (1)
- AmaP (1)
- Aminierung (1)
- Aminosäurederivate (1)
- Anaerobe Bakterien (1)
- Anaerobiose (1)
- Anreicherung (1)
- Antibiotika (1)
- Antibiotika-Stress (1)
- Antibiotikum , Proteom , Clostridium difficile , In vivo , In vitro (1)
- Antikörper (1)
- Antikörperantwort (1)
- Apoptose (1)
- Arbovirus (1)
- Arenaviren (1)
- Arenavirus (1)
- Argininphosphorylierung (1)
- Arxula adeninivorans yeast androgen screen Assay (A-YAS Assay) (1)
- Arxula adeninivorans yeast androgen screen assay (A-YAS assay) (1)
- Arxula adeninivoras (1)
- Asp23 (1)
- Astrovirus (1)
- Atemwege (1)
- Aujeszky-Krankheit (1)
- Avian Influenza Virus (1)
- Aviäre Influenza Viren (1)
- Azotobacter chroococcum (1)
- BALB/c Maus (1)
- BHV-1 (1)
- BPA-Abbauweg (1)
- BTX-Aromaten (1)
- BacMam (1)
- Bacillus amyloliquefaciens (1)
- Bacillus licheniformis (1)
- Bacillus pumilus (1)
- Bacteria (1)
- Bacterial cell membrane (1)
- Bacterial cell wall (1)
- Bakterielle Infektion (1)
- Bakteriolyse (1)
- Baltic Sea (1)
- Barth syndrome (1)
- Barth syndrome (BTHS) (1)
- Bauchfellentzündung (1)
- Biocomputational metho (1)
- Biokatalyse (1)
- Biomarker (1)
- Biomedical model (1)
- Biomolecules (1)
- Biotinylierungsansatz (1)
- Biotramsformation (1)
- Biotransformation (1)
- Bisphenol A (1)
- Bisphenole (1)
- Bivalent (1)
- Blastobotrys adeninivorans (1)
- Blau/Weiß-Selektion (1)
- Blut (1)
- Blutimmunzelle (1)
- Blutplasma (1)
- Blutplasmafaktor (1)
- Bornavirus (1)
- Bovine TB, neutrophils, immunology, zoonotic TB (1)
- Brackwasser (1)
- Brain infection (1)
- Brustkrebs (1)
- Budding (1)
- Bungowannah-Virus (1)
- Burkholderia (1)
- CAD (1)
- CD44 (1)
- CD56 (1)
- CD8+ T-Zellantwort (1)
- CNS (1)
- CP7_E2alf (1)
- CRISPR/Cas-Methode (1)
- Candida albicans (1)
- Capripox (1)
- Carbazol (1)
- Cell aggregation (1)
- Cell division defect (1)
- Central Europe (1)
- Chemotherapy (1)
- Classical swine fever virus (1)
- Clethrionomys glareolus (1)
- Clostridioides difficile (1)
- Clostridium difficile (1)
- Clp proteolysis (1)
- Coagulation (1)
- CodY (1)
- Cowpox (1)
- Cowpox virus (1)
- Cumarine (1)
- Cutinase (1)
- Cysten (1)
- Cystic Fibrosis (1)
- Cytometrie (1)
- Cytoprotection (1)
- D61Y mutation (1)
- DEB-model (1)
- DIVA Vakzine (1)
- DIVA-Impfstoff (1)
- DNA extraction bias (1)
- DNA preservation (1)
- DUF322 (1)
- Dekanol (1)
- Demographie (1)
- Desulfococcus multivorans (1)
- Detoxifizierung (1)
- Dibenzothiophen (1)
- Durchflusscytometrie (1)
- EBLV-1 (1)
- ECM (1)
- EMR1 (1)
- ER stress (1)
- ERK-Signalkaskade (1)
- Early Warning (1)
- Ebola-Virus (1)
- Effektive Konzentration (1)
- Effizienz (1)
- Egyptian Rousette Bat (1)
- Einschlusskörper (1)
- Elastase (1)
- Elastase-abhängige Lebend-attenuierte Vakzine (1)
- Elektronenmikroskopie (1)
- Elektronensprayionisations-Massenspektrometrie (1)
- Encephalitis (1)
- Endocrine disruption (1)
- Endokrine Disruption (1)
- Endokrine Disruptoren (1)
- Endoplasmatisches Retikulum (1)
- Entzündung (1)
- Enzymaktivität (1)
- Erdöl-Kohlenwasserstoffe (1)
- Escherichia coli (1)
- Esterasen (1)
- Estradiol (1)
- Euterentzündung (1)
- Extracellular Matrix (1)
- Extrazelluläre Matrix (1)
- F-Protein (1)
- F-protein (1)
- F4/80 (1)
- Ferkel (1)
- Festphasenextraktion (1)
- Fibronectin binding protein (1)
- Fibronektinbindungsprotein (1)
- Filoviruses (1)
- Fish (1)
- Fledermaus (1)
- Flow Cytometry (1)
- Flow cytometry (1)
- Flughund (1)
- Fluoren (1)
- Fragmentierung (1)
- Fragmentierung der Kernmembran (1)
- Friedrich-Loeffler-Institut Insel Riems (1)
- Functional characterization (1)
- Fusionsprotein (1)
- Gedächtniszelle (1)
- Geflügelpest (1)
- Geflügelpestvirus (1)
- Gelfreie Proteinanalytik (1)
- General Stress (1)
- Genetic diversity (1)
- Genom (1)
- Genomic classification (1)
- Genomik (1)
- Genotyp (1)
- Geobacter sulfurreducens (1)
- Glukosehunger (1)
- Glutathion (1)
- Glycoprotein B (1)
- Glykoprotein B (1)
- Glykoprotein D (1)
- Glykoproteine (1)
- Goatpox virus (1)
- Golgi-Apparat (1)
- Gram-positive Bakterien (1)
- Gram-positive bacteria (1)
- Grippe (1)
- Gromov-Wasserstein distance (1)
- Group B streptococcus (1)
- GudB (1)
- H10N7 (1)
- H1N1 (1)
- H3N2 (1)
- H4N2 (1)
- H5N8 Clade 2.3.4.4 (1)
- H9N2 (1)
- HEV (1)
- HN-Protein (1)
- HN-protein (1)
- HPLC-MS (1)
- HSV-1 (1)
- Hanta-Virus (1)
- Hantaviren (1)
- Hantavirus (1)
- Hantaviruses (1)
- Harn (1)
- Hausratte (1)
- Heat shock protein 27 (1)
- Heimtiere (1)
- Hemolysis (1)
- Hendravirus (1)
- Henipavirus-ähnliche Partikel (1)
- Hepatitis-E-Virus (1)
- High-throughput Sequencing (1)
- High-throughput screening (1)
- Hitzestress (1)
- Hormonrezeptor (1)
- Humorale Immunität (1)
- Hund (1)
- Hydrophobizität (1)
- Hydroxylierung (1)
- Hyperthyreose (1)
- ICUAW (1)
- IFN-Antagonist (1)
- Imhoff sedimentation cones (1)
- Immunantwort (1)
- Immune response (1)
- Immunity (1)
- Immunology (1)
- Immunoproteasome (1)
- Infektion (1)
- Inflammation (1)
- Influenza (1)
- Influenza virus (1)
- Influenzaviren (1)
- Influenzavirus (1)
- Inositol (1)
- Integrins (1)
- Interactions (1)
- Interferons (1)
- Ion Torrent (1)
- Iron limitation (1)
- Isotopenmarkierung (1)
- Junín virus (1)
- Kalb (1)
- Kaltes Plasma (1)
- Kaninchen (1)
- Kapsid (1)
- Katze (1)
- Kernaustrittskomplex (1)
- Kernexport (1)
- Kernfreisetzungskomplex (1)
- Kleinsäuger (1)
- Koi (1)
- Kontaktwinkel (1)
- Krebs (1)
- Kuhpockenvirus (1)
- LMP2 (1)
- LMP7 (1)
- Lebendimpfstoff (1)
- Lebendmarker-Vakzine (1)
- Lebendzellmikroskopie (1)
- Lebenswissenschaften (1)
- Leptospira (1)
- Leptospira spp. (1)
- Leptospiren (1)
- Leukozyten (1)
- Lichtscheibenmikroskopie (1)
- Life sciences (1)
- Ligandenbindungsdomäne (1)
- Lipoproteine (1)
- Lipoproteins (1)
- Listeria monocytogenes (1)
- Live-Cell-Imaging (1)
- Lokalisation (1)
- Lumpy Skin Disease virus (1)
- Lyssaviren (1)
- Lösungsmittel (1)
- MECL-1 (1)
- MKSV (1)
- MLVA (1)
- Markervakzine (1)
- Massenspektromie (1)
- Mathematical bioscience (1)
- Matrixprotein (1)
- McsB arginine kinase (1)
- Medizinische Mikrobiologie (1)
- Membranproteine (1)
- Memory T cell (1)
- Metabolom (1)
- Metagenomics (1)
- Metagenomik (1)
- Metallomics (1)
- Methylcarbazol (1)
- MgsR (1)
- Microtus (1)
- Mikrobieller Abbau (1)
- Mikroskopie (1)
- Minigenome system (1)
- Mukoviszidose (1)
- Mutante (1)
- Myceliophthora thermophila (1)
- Mycobacterium neoaurum (1)
- Myodes glareolus (1)
- NAFLD (1)
- NEC (1)
- NSs protein (1)
- NXF1 (1)
- Nagetiere (1)
- Natural host (1)
- Nervensystem (1)
- Neuroimmunologie (1)
- Newcastle Disease Virus (1)
- Newcastle disease (1)
- Newcastle-Disease-Virus (1)
- Next-Generation Sequencing (1)
- Niedertemperaturplasma (1)
- Nipahvirus (1)
- Nocardia cyriacigeorgica (1)
- Nuclear export (1)
- Nucleoprotein (1)
- Nukleocapsid (1)
- Nutztiere (1)
- OMV (1)
- Oberflächenplasmonresonanz (1)
- Omnilog (1)
- Optimierung (1)
- Oral Vaccine (1)
- Oral vaccine (1)
- Organisches Lösungsmittel (1)
- Orthobunyaviren (1)
- Orthobunyavirus (1)
- Osmoregulation (1)
- Outbreak (1)
- Outbreak Preparedness (1)
- Oxidative Stress (1)
- Oxidativer Stress (1)
- P (1)
- PB2 (1)
- PCLake (1)
- PPMV-1 (1)
- Pan-lipoproteome analysis (1)
- Parasit (1)
- Passagieren (1)
- Pathogen (1)
- PavB (1)
- Pelargonie (1)
- Peritonitis (1)
- Pest der kleinen Wiederkäuer (1)
- Pharmaceuticals (1)
- Phenol (1)
- Phenoloxidase (1)
- Phenylalkane (1)
- Phospholipids (1)
- Phosphopeptid-Anreicherung (1)
- Phosphopeptidanreicherung (1)
- Phosphoproteom (1)
- Phosphoproteomik (1)
- Phylogenetik (1)
- Physiological proteomics (1)
- Physiologie (1)
- Phytase reporter assay (1)
- Pig (1)
- Pigment (1)
- Pilze (1)
- Plasma (1)
- Plasmadiagnostik (1)
- Plasmawechselwirkung (1)
- Plasminogen binding protein (1)
- Plasminogenbindungsprotein (1)
- Pneumokokken (1)
- Polycaprolactone (1)
- Polyerase-Komplex (1)
- Polyester (1)
- Polymorphismus (1)
- Poultry and mammals (1)
- Predation (1)
- Progesteron (1)
- Prostate cancer (1)
- Proteasom (1)
- Protein Carbonylation (1)
- Protein-Microarray (1)
- Protein-Phosphorylierung (1)
- Proteinidentifizierung (1)
- Proteinisoform (1)
- Proteinisoforms (1)
- Proteinkinase (1)
- Proteinphosphorylierung (1)
- Proteins (1)
- Proteom-Analyse (1)
- Proteomik (1)
- Proteomstudien (1)
- Protoplastenfusion (1)
- Pseudomallei (1)
- Pseudomonas aeruginosa (1)
- Pseudomonas fluorescens (1)
- Pseudomonas putida DOT-T1E (1)
- Pseudomonas putida P8 (1)
- Pseudorabies (1)
- Pseudorabiesvirus (1)
- Puumala virus (1)
- Pycnoporus cinnabarinus (1)
- Q-Fieber (1)
- Quantification (1)
- RABV (1)
- RNAlater (1)
- RT-PCR (1)
- Rabies (1)
- Rabiesvirus (1)
- Rainbow Trout (1)
- Rainbow trout (1)
- Ralstonia solanacearum (1)
- Rasterkraftmikroskopie (1)
- Redox signaling (1)
- Regulation (1)
- Regulator (1)
- Rekombination (1)
- Replikation (1)
- Replikon (1)
- Reporter Assay (1)
- Reservoirwirt (1)
- Resistenz (1)
- Resistenzzüchtung (1)
- Retention (1)
- Reverse Genetics (1)
- Reverses Genetisches System (1)
- Reverses genetisches System (1)
- Rex (1)
- Rhabdoviren (1)
- Rhodococcus ruber (1)
- Ribotyping (1)
- Ribotypisierung (1)
- Rickettsia (1)
- Rodents (1)
- RpoN signaling (1)
- SARS-CoV-2 (1)
- SHP2 (1)
- SRM (1)
- STEC (1)
- Sae (1)
- Saisonalität (1)
- Sandsäulen (1)
- SarA (1)
- Schadstoffabbau (1)
- Schilddrüse (1)
- Schmallenberg-Virus (1)
- Schweinekrankheit (1)
- Sekretion (1)
- Selective breeding (1)
- Sequenzierung (1)
- Ser/Thr kinases (1)
- Sheeppox virus (1)
- Shiga toxin-producing <i>Escherichia coli</i> (1)
- Shotgun (1)
- Sicherheit (1)
- SigB (1)
- Signaltransduktion (1)
- Spaltstellen (1)
- Sporulation (1)
- Staphylococcus (1)
- Staphylococcus aureus, MRSA, USA300, antibiotic resistance, drug evasion. (1)
- Stickland reactions (1)
- Stickstofffixierung (1)
- Stress (1)
- Structure (1)
- Superantigen (1)
- Sus scrofa domesticus (1)
- T cell (1)
- T cells (1)
- T zell (1)
- TCF11/Nrf1 (1)
- TGR(mREN2)27 (1)
- Tannase (1)
- Tannase reporter assay (1)
- Tegumentprotein (1)
- Teichoic acid (1)
- Tetrahydrocarbazol (1)
- Thauera aromatica (1)
- Thioredoxin (1)
- Thyroxin (1)
- Tiergesundheit (1)
- Tiermedizin (1)
- Tierseuche (1)
- Tissue Optical Clearing (1)
- Topologie (1)
- Toxoplasmose (1)
- Transaktivierungsbiosensor (1)
- Transcriptom (1)
- Transmission (1)
- Trichosporon (1)
- Tumore (1)
- Tumorzellen (1)
- UAP56 (1)
- UL31 (1)
- UL34 (1)
- UPS (1)
- Umweltfaktor (1)
- V-Protein (1)
- Vaccine (1)
- Vakzin (1)
- Vektor (1)
- Vektor-Vakzine (1)
- Vektorvakzine (1)
- Vielfalt (1)
- Viren (1)
- Virulence determinants (1)
- Virulenzfaktor S. pneumoniae (1)
- Virulenzfaktoren (1)
- Virus Discovery (1)
- Virus der klassischen Schweinepest (1)
- Virus discovery (1)
- Virus evolution (1)
- Virus isolation (1)
- Virus-Wirt (1)
- Virus-host interaction (1)
- Virusdiarrhoe-Mucosal-Disease-Virus (1)
- Vitronectin binding protein (1)
- Vitronektinbindungsprotein (1)
- Wanderratte (1)
- Warburg effect (1)
- Weiße Biotechnologie (1)
- Western diet (1)
- White Biotechnology (1)
- Wirt-Erreger Interaktion (1)
- Wirtsfaktoren (1)
- Wirtsspezifität (1)
- Wirtszellmanipulation (1)
- Xanthomonas (1)
- Xplor2® Transformations-/Expressionssystem (1)
- Yeast (1)
- Zell-Plasmawechselwirkung (1)
- Zellautonome Immunität (1)
- Zellkern (1)
- Zelloberflächenproteine (1)
- Zelltropismus (1)
- Zellwand (1)
- Zi-Pi plot (1)
- Zoonosen (1)
- Zoonosis (1)
- absolute protein quantification (1)
- acid resistance (1)
- adhesion (1)
- aggregate biofilm (1)
- akzessorische Proteine (1)
- amination (1)
- aminoglycoside antibiotics (1)
- anaerob (1)
- antibakteriell (1)
- antibiotic (1)
- antibiotics (1)
- antibody (1)
- antifungal (1)
- antimicrobial (1)
- antimicrobial activity (1)
- antimicrobial peptides (1)
- antimicrobial resistance (AMR) (1)
- aquatic plants (1)
- arctic (1)
- arginine phosphorylation (1)
- artificially in vitro assay (1)
- aureus (1)
- avian influenza virus (1)
- aviäre Schweineviren (1)
- bacterial pathogens (1)
- bacterioplankton (1)
- bile acids (1)
- biocatalysis (1)
- biofilm degradation (1)
- biofilms (1)
- bioinformatics (1)
- biomanipulation (1)
- biomedical model swine (1)
- biotinylation approach (1)
- biotransformation (1)
- bisphenol A (1)
- bovine (1)
- bovine soft palate (1)
- bvdv (1)
- carbapenem (1)
- cardiolipin (1)
- carp (1)
- castration-resistant prostate cancer (1)
- catechol-1,2-dioxygenase (ACDO1) (1)
- cell biology (1)
- cell surface antigens (1)
- cell-surface proteins (1)
- cellobiose (1)
- cellular proliferation (1)
- chemosynthesis (1)
- chimäre Proteine (1)
- cluster formation (1)
- co-occurrence network (1)
- cold atmospheric plasma (1)
- colonization type (1)
- colony biofilm (1)
- complete genome (1)
- contact angle (1)
- coumarin (1)
- coumarins (1)
- crispr/cas9 (1)
- cystic fibrosis (1)
- cytotoxicity (1)
- decanol (1)
- decontamination (1)
- degradation (1)
- degree of saturation (1)
- diversity (1)
- drying–rewetting (1)
- ecological succession (1)
- effective concentration (1)
- efficacy (1)
- endemic region (1)
- endocrine disrupting chemicals (1)
- entry (1)
- enzyme (1)
- enzyme activity (1)
- essentielles Tegumentprotein pUL36 (1)
- eutrophication (1)
- evolutionary lineage (1)
- filamentöse Pilze (1)
- fish vaccine (1)
- flagella (1)
- flash freezing (1)
- florfenicol (1)
- food industry (1)
- food spoilage (1)
- food spoilers (1)
- foot-and-mouth disease virus (FMDV) (1)
- functional analyses (1)
- funktionelle Analyse (1)
- fusion loops (1)
- gH/gL complex (1)
- gallic acid decarboxylase (AGDC1) (1)
- gastrointestinal microbiome (1)
- gel-free proteomics (1)
- gelbasiert (1)
- gelfrei (1)
- general stress response (1)
- genome (1)
- genomics (1)
- global (1)
- glycoprotein H (1)
- glycosylation (1)
- great plate count anomaly (1)
- growth rates (1)
- hemagglutinin (1)
- high-throughput sequencing (1)
- holobiont (1)
- host-microbe interactions (1)
- hydrophobicty (1)
- hydrothermal vents (1)
- imipenem (1)
- immune response (1)
- immunity (1)
- immunoproteasome (1)
- in vitro (1)
- in vitro Bioassay (1)
- in vitro bioassay (1)
- in vivo (1)
- in-vitro Kultur (1)
- inactivated vaccine (1)
- inactivation (1)
- infection (1)
- influenza virus (1)
- innate immune system (1)
- integrated multi-omics (1)
- interferon-stimulated genes (ISG) (1)
- intracellular transport (1)
- intrazellulärer Transport (1)
- iron limitation (1)
- isotopic labeling (1)
- keystone taxa (1)
- konfokale Laser-Scanning-Mikroskopie (1)
- label-free quantification (1)
- lake restoration. nutrient load reduction (1)
- large tegument protein (1)
- large tegument protein pUL36 (1)
- ligand binding domain (1)
- light microscopy (1)
- light sheet fluorescence microscopy (1)
- lipidation (1)
- lipids (1)
- lipoproteins (1)
- live marker vaccine (1)
- liver fibrosis (1)
- mRNA-Editierung (1)
- mTORC1 (1)
- macrophage (1)
- marine bacteria (1)
- marker vaccines (1)
- meta-analysis (1)
- metabolic activity (1)
- metabolic labeling of complete cells (1)
- metabolische markierung von Gesamtzellen (1)
- metabolism (1)
- methane (1)
- methicillin-resistant (1)
- microbial communities (1)
- microbial community (1)
- microbial function (1)
- microbiota (1)
- microglia (1)
- mitochondria (1)
- molecular (1)
- molecular ecology (1)
- monoclonal antibodies (1)
- monoklonale Antikörper (1)
- multi-omics (1)
- multidrug resistance (MDR) (1)
- muscle wasting (1)
- mussel cultivation (1)
- nasopharynx (1)
- nervous system (1)
- neue Virulenzfaktoren (1)
- neurodevelopmental disorders (1)
- neuroinflammation (1)
- new Arxula Yeast Estrogen Assay (nAES-Assay) (1)
- new virulence factors (1)
- nitrosativer Stress (1)
- non-H5/H7 (1)
- non-thermal plasma (1)
- nuclear egress complex (1)
- nuclear envelope breakdown (1)
- oligotroph (1)
- oncolytic (1)
- onkolytisch (1)
- organic solvents (1)
- organische Lösungsmittel (1)
- osmotic stress (1)
- outbreak (1)
- outer membrane vesicles (1)
- oxidativer Stress (1)
- pUL17 (1)
- pUL25 (1)
- pUL31 (1)
- pUL35 (1)
- pUL36 (1)
- pUL37 (1)
- pUS3 (1)
- pathogenicity (1)
- pathway (1)
- permafrost (1)
- phosphatases (1)
- phosphate starvation (1)
- phosphopeptide enrichment (1)
- phosphoproteomics (1)
- phosphorylation (1)
- phycosphere (1)
- plant traits (1)
- pneumococcal colonization (1)
- polymerase complex (1)
- porcine epidemic diarrhea virus (1)
- portal hypertension (1)
- porzines epidemisches Diarrhoevirus (1)
- prevalence (1)
- primär umhüllte Virionen (1)
- profitability (1)
- protection (1)
- protein aggregation (1)
- protein identification/quantification (1)
- protein kinase (1)
- protein quantification (1)
- protein synthesis (1)
- proteolysis (1)
- proteolytic activation (1)
- proteome signatures (1)
- proteomic adaptation (1)
- proteomic analysis (1)
- proteostasis (1)
- proteostasis in skeletal muscle (1)
- questing tick (1)
- rabies virus (1)
- receptor binding (1)
- recombinant baculoviruses (1)
- recombinant viruses (1)
- regime shift (1)
- regulatorisches Netzwerk (1)
- regulatory network (1)
- rekombinante Baculoviren (1)
- rekombinante Viren (1)
- reservoir (1)
- resistance (1)
- respiratory tract (1)
- reverse Genetik (1)
- reverse genetics (1)
- safety (1)
- sample storage (1)
- sand columns (1)
- seagrass microbiome (1)
- shotgun-proteomics (1)
- sigB (1)
- sigma factor σW (1)
- signal transduction (1)
- small mammals (1)
- snoD mutant (1)
- soil proteins (1)
- solvents (1)
- spectral libraries (1)
- spectral library (1)
- sporulation (1)
- sputum (1)
- stabile Isotopenmarkierung (1)
- starvation (1)
- stress response (1)
- stress signal (1)
- subcellular fractionation (1)
- tPMP resistance (1)
- tafazzin (1)
- tannic acid degradation pathway (1)
- tannin catabolism (1)
- temperature (1)
- temperature adaptation (1)
- tissue optical clearing (1)
- torsin (1)
- toxin A (1)
- toxin formation (1)
- trans-cis ratio (1)
- trans/cis-Verhältnis (1)
- transmission (1)
- transporters (1)
- tumor-cells (1)
- ubiquitin (1)
- ubiquitin-proteasome system (1)
- unfolded protein response (1)
- vaccine (1)
- vector vaccine (1)
- viral vectors (1)
- virale Vektoren (1)
- virion morphogenesis (1)
- virulence determinants (1)
- virulence factor S. pneumoniae (1)
- virus (1)
- virus discovery (1)
- virus-host interaction (1)
- xGND (1)
- zellautonome Immunität (1)
- zeta potential (1)
- zytotoxic (1)
- zytotoxisch (1)
- Östrogen-Rezeptor-Modulator (1)
- Östrogenität (1)
- β-lactam antibiotics (1)
Institute
- Abteilung für Mikrobiologie und Molekularbiologie (190) (remove)
Publisher
- MDPI (20)
- Frontiers Media S.A. (16)
- S. Karger AG (3)
- ASM (1)
- Elsevier (1)
- Frontiers (1)
- John Wiley & Sons, Ltd (1)
- Wiley (1)
Methane (CH4) is a potent greenhouse gas with rising atmospheric concentrations.
Microorganisms are essential players in the global methane cycle. In fact, the largest part of methane emissions derives from microbial production by methanogenic Archaea (methanogens). Microorganisms do not only produce methane: methanotrophs can also oxidize the methane produced by methanogens. In addition, soil methanotrophs are the only biological methane sink, oxidizing up to 30-40 Tg of this potent greenhouse gas per year worldwide.
However, intensified management of grasslands and forests may reduce the methane sink capacity of soils.
In general, the interaction of methanogens and methanotrophs determines whether a soil is a source or a sink for methane. It is, therefore, crucial to understand the microbial part of the methane cycle and which factors influence the abundance and activity of methane-cycling microbes. However, capturing the soil microbiome's abundances, activity, and identity is
challenging. There are numerous target molecules and myriad methods, each with certain
limitations. Linking microbial markers to methane fluxes is therefore challenging. This thesis aimed to understand how methane-cycling microbes in the soil are related to soil methane fluxes and how soil characteristics and human activity influence them.
The first publication investigated the biotic and abiotic drivers of the atmospheric methane sink of soils. It assessed the influence of grassland land-use intensity (150 sites) and forest management type (149 sites) on potential atmospheric methane oxidation rates (PMORs) and the abundance and diversity of CH4-oxidizing bacteria (MOB) with qPCR in topsoils of three temperate regions in Germany. PMORs measured in microcosms under defined conditions were approximately twice as high in forest than in grassland soils. High land-use intensity of grasslands negatively affected PMORs (−40%) in almost all regions. Among the different aspects of land-use intensity, fertilization had the most adverse effect reducing PMORs by 20%.
In contrast, forest management did not affect PMORs in forest soils. Upland soil cluster (USC)α was the dominant group of MOBs in the forests. In contrast, USCγ was absent in more than half of the forest soils but present in almost all grassland soils. USCα abundance had a direct positive effect on PMOR in forests, while in grasslands, USCα and USCγ abundance affected PMOR positively with a more pronounced contribution of USCγ than USCα.
In the second publication, we used quantitative metatranscriptomics to link methane-cycling microbiomes to net surface methane fluxes throughout a year in two grassland soils. Methane fluxes were highly dynamic: both soils were net methane sources in autumn and winter and net methane sinks in spring and summer. Correspondingly, methanogen mRNA abundances per
gram soil correlated well with methane fluxes. Methanotroph to methanogen mRNA ratios were higher in spring and summer when the soils acted as net methane sinks. Furthermore, methane uptake was associated with an increased proportion of USCα and γ pmoA and pmoA2 transcripts. High methanotroph to methanogen ratios would indicate methane sink properties.
Our study links the seasonal transcriptional dynamics of methane-cycling soil microbiomes for the first time to gas fluxes in situ. It suggests mRNA transcript abundances as promising indicators of dynamic ecosystem-level processes.
We conclude that reduction in grassland land-use intensity and afforestation can potentially increase the methane sink function of soils and that different parameters determine the microbial methane sink in forest and grassland soils. Furthermore, this thesis suggests mRNA transcript abundances as promising indicators of dynamic ecosystem-level processes. Methanogen transcript abundance may be used as a proxy for changes in net surface methane emissions from grassland soils.
Responses of bovine and human neutrophils to members of the Mycobacterium tuberculosis complex
(2023)
PMN are one of the most important cells of the innate immune system and are responsible for fast clearance of invading pathogens in most circumstances. The role of human PMN during mycobacterial infection have been widely studied. Nevertheless, there are contradicting results regarding their role in protection or pathology during TB. Similar studies focusing on bovine PMN and their role in M. bovis infection remain understudied. Also, not much is known about attenuation of M. tb in cattle and responses of PMN to this MTBC member.
The major aims of this study were to i) gain insights into bovine PMN biology and the cellular processes triggered by challenge with virulent mycobacteria and to ii) find out whether interspecies differences result in different outcomes upon in vitro challenge. In the first part of the work, a new isolation method for bovine PMN from whole blood was developed. Human and bovine PMN have different buoyant properties and hence need to be isolated using different procedures. The magnetic isolation method developed within this thesis is robust and results in very good yields of highly pure, viable bovine PMN populations. This is extremely advantageous and indispensable for downstream functional assays that are required to be performed on a single day.
The second goal of this study was to compare and contrast the functional differences between bovine and human PMN upon BCG infection. The findings reveal for the first time that human PMN phagocytose more BCG in comparison to bovine counterparts. Non-opsonized bacteria were internalized via the lectin-like C-domain, require cholesterol and an active cytoskeleton in human PMN, whereas opsonized bacteria entered cells via the CR3 and, in particular, CD11b. It remains unresolved why bovine PMN reacted differently, notably phagocytosis remained unaltered, to various treatments, including blocking monoclonal antibodies to CD11b and chemical inhibitors altering the cell membrane. Nonetheless, the increased uptake of BCG by human PMN correlates to more potent response of these cells in functional assays in comparison to bovine PMN. No PMN intrinsic differences were found in the basal cholesterol content. Comparative assays with the virulent strains would be essential in order to generalize these observations.
The third aim was to investigate the responses of bovine PMN to BCG, M. tb and M. bovis. While there was no difference in uptake between BCG and M. tb, serum opsonized BCG was taken up at a higher amount. This finding suggests differential binding of bacterial epitopes to host cell receptors which modulates mycobacteria uptake. However, between the virulent strains M. tb and M. bovis, the human-adapted bacillus was phagocytosed at a higher rate which hints towards the possibility of rapid recognition and clearance of M. tb in bovine host thereby possibly preventing pathology. The release of selective cytokines by PMN post infection with the virulent strains offers baseline information relevant for processes that probably occur in vivo. This work for the first time provides insights into responses of bovine PMN to mycobacteria in a two-tier approach: by cross-species analysis of PMN responses to selected mycobacterium and by head-to-head analysis of bovine PMN to animal-adapted and human-adapted mycobacteria.
As a prospect for future research in bovine PMN biology in the context of mycobacterial infection, it would be highly advantageous to compare the subcellular localization of M. tb and M. bovis in bovine PMN using confocal and/or electron microscopy. This analysis would confer proof on attachment or internalization of mycobacteria by PMN and identify the features of the mycobacteria-containing compartments. Also, in-depth investigations of additional entry pathways for the pathogen in bovine cells would be informative for unlocking downstream cell signaling events. In addition, PMN viability studies will be meaningful particularly in bovine PMN challenged with M. bovis and M. tb, given the impact of death patterns on tissue pathology. Current results and follow up studies will contribute to the understanding of the roles of PMN in controlling elimination or growth of M. bovis and M. tb in cattle.
Coding constraints imposed by the very small genome sizes of negative-strand RNA viruses (NSVs) have led to the development of numerous strategies that increase viral protein diversity, enabling the virus to both establish a productive viral replication cycle and effectively control the host antiviral response. Arenaviruses are no exception to this, and previous findings have demonstrated that the nucleoprotein (NP) of the highly pathogenic Junín virus (JUNV) exists as three additional N-terminally truncated isoforms of 53 kD (NP53kD), 47 kD (NP47kD), and 40 kD (NP40kD). The two smaller isoforms (i.e. NP47kD and NP40kD) have been characterized as products of caspase cleavage, which appears to serve a decoy function to inhibit apoptosis induction. However, whether they have additional functions in the viral replication cycle remains unknown. Further, the origin and function of NP53kD has not yet been described.
In order to first identify the mechanism responsible for production of the NP53kD variant, a possible role of additional caspase cleavage sites was first excluded using a site mutagenesis approach. Subsequently, alanine mutagenesis was then used to identify a region responsible for NP53kD production. As a result, three methionine residues were identified within the characterized sequence segment of NP, linking the production of NP53kD to an alternative in-frame translation initiation. Further site-directed mutagenesis of the previously identified putative in-frame methionine codons (i.e. M78, M80 and M100) finally led to the identification of translation initiation at M80 as being predominantly responsible for the production of NP53kD. Once the identity of all three NP isoforms was known, it was then of further interest to more deeply characterize their functional roles. Consistent with the N-terminal domain containing RNA binding and homotrimerization motifs that are relevant for the viral RNA synthesis process, it could be demonstrated that all three truncated NP isoforms lost the ability to support viral RNA synthesis in a minigenome assay. However, they also did not interfere with viral RNA synthesis by full-length NP, nor did they affect the ability of the matrix protein Z to inhibit viral RNA synthesis. Moreover, it was observed that loss of the oligomerization motifs in the N-terminus also affected the subcellular localization of all three NP isoforms, which were no longer localized in discrete perinuclear inclusion bodies, but rather showed a diffuse distribution throughout the cytoplasm, with the smallest isoform NP40kD also being able to enter the nucleus. Surprisingly, the 3'-5' exonuclease function of NP, which is associated with the C-terminal domain and plays a role in inhibiting interferon induction by digestion of double-stranded RNAs, was found to be retained only by the NP40kD isoform, despite that all three isoforms retained the associated domain. Finally, previous studies using transfected NP and chemical induction of apoptosis have suggested that cleavage of NP at the caspase motifs responsible for generating NP47kD and NP40kD plays a role in controlling activation of the apoptosis pathway. Therefore, to further characterize the connection between the generation of NP isoforms and the regulation of apoptosis in a viral context, recombinant JUNVs deficient in the respective isoforms were generated. Unlike infections with wild-type JUNV, mutations of the caspase cleavage sites resulted in the induction of caspases activation. Surprisingly, however, this was also the case for mutation of the alternate start codon responsible for NP53kD generation.
Taken together, the data from this study suggest a model whereby JUNV generates a pool of smaller NP isoforms with a predominantly cytoplasmic distribution. As a result of this altered localization, NP53kD appears to be able to serve as the substrate for further generation of NP47kD and NP40kD by caspase cleavage. Not only does this cleavage inhibit apoptosis induction during JUNV infection, it also results in a cytoplasmic isoform of NP that retains strong 3'-5' exonuclease activity (i.e. NP40kD) and thus may play an important role in preventing viral double-stranded RNA accumulation in the cytoplasm, where it can lead to activation of IFN signaling. Overall, such results emphasize the relevance of alternative protein isoforms in virus biology, and particularly in regulation of the host response to infection.
The aim of this work was to characterize the distribution of TULV in European common vole populations, to clarify the host association of TULV and to investigate correlations between host population dynamics and changes in TULV prevalence. Furthermore, the potential of common voles as reservoir for other rodent-borne pathogens was examined in comparison to other rodent species.
Molecular and serological analysis of rodents captured at 87 locations in Germany, France, Luxembourg, and Austria revealed TULV infections at 53.6 % of all trapping locations. The seroprevalence in common voles was low with a mean of 8.5 % (range: 0 – 19 %). TULV RNA was more often detected (mean: 15.3 %, range 0 - 37.5 %). Field voles (Microtus agrestis) and water voles (Arvicola amphibius) were less often tested positive for TULV: mean seroprevalence was 7 % for field voles and 6.7 % for water voles. RNA could be detected in 5.4 % of all tested field voles and 3.2 % of water voles and with exception of a single field vole only when TULV-RNA-positive common voles were trapped at the same location. Those results indicate that TULV infections of field and water voles are spillover infections from sympatric TULV-infected common voles. Phylogenetic analysis revealed distinct genetic differences between TULV sequences of regions of greater geographical distance which were associated with different evolutionary common vole lineages. Furthermore, we could detect genetic differences between TULV strains from trapping sites close to each other (ca. 10 km).
In a capture-mark-recapture study 1042 common voles captured in live traps in Germany were sampled as well as 225 captured in snap traps. When analyzing the seroprevalence of fluctuating common vole populations over several years and seasons we found a negative correlation between prevalence and population density in the current season but a delayed density-dependent positive correlation between the current population density and seroprevalence in the next season. However, this trend varied geographically between the four trapping locations. Usually, population density as well as seroprevalence peaked at the end of the reproductive period in autumn with the exception of Weissach (2010-2012), Jeeser (2010) and Gotha (2012) where population peaks in summer were observed.
In a pilot study in Austria common voles were captured as well as three other rodent species. They were investigated not only for presence of different viruses (TULV, Dobrava- Belgrade orthohantavirus (DOBV), Puumala orthohantavirus (PUUV), Lymphocytic choriomeningitis mammarenavirus (LCMV), Cowpox virus (CPXV)) but also pathogenic bacteria and endoparasites (Leptospira spp., Toxoplasma gondii, Borrelia afzelii, Coxiella burnetii, Rickettsia spp. und Bartonella spp.). Of all four captured species, common voles were most often infected with at least one pathogen (66.7 %), followed by wood mice (Apodemus sylvaticus) (57.7 %), bank voles (Myodes glareolus) (35 %) and yellow-necked field mice (Apodemus flavicollis) (34.5 %). Common voles were also exceptionally susceptible to multiple infections: 66.7 % of them were infected with two or three different pathogens, compared to 6.9 % of yellow-necked field mice and 2.5 % of bank voles. No multiple infections could be detected in wood mice.
The broad geographic distribution of TULV in its reservoir host is in contrast to the rare reports of human infection but might be explained with a low pathogenicity for humans or with the low prevalence in host populations. In addition, the rare detection of human TULV infections could be a result of the used diagnostic methods. Since the reservoir population is known for its dramatic changes in population density and recurring superabundances which facilitates frequent contact to humans, TULV should more often be considered as cause for human disease in future analysis. In
addition, several other zoonotic pathogens could be detected in common voles which could influence TULV infections in the reservoir host but also TULV transmission to humans and therefore deserve more attention in future research.
Abstract
DNA extraction and preservation bias is a recurring topic in DNA sequencing‐based microbial ecology. The different methodologies can lead to distinct outcomes, which has been demonstrated especially in studies investigating prokaryotic community composition. Eukaryotic microbes are ubiquitous, diverse, and increasingly a subject of investigation in addition to bacteria and archaea. However, little is known about how the choice of DNA preservation and extraction methodology impacts perceived eukaryotic community composition. In this study, we compared the effect of two DNA preservation methods and six DNA extraction methods on the community profiles of both eukaryotes and prokaryotes in phototrophic biofilms on seagrass (Zostera marina) leaves from the Baltic Sea. We found that, whereas both DNA preservation and extraction method caused significant bias in perceived community composition for both eukaryotes and prokaryotes, extraction bias was more pronounced for eukaryotes than for prokaryotes. In particular, soft‐bodied and hard‐shelled eukaryotes like nematodes and diatoms, respectively, were differentially abundant depending on the extraction method. We conclude that careful consideration of DNA preservation and extraction methodology is crucial to achieving representative community profiles of eukaryotes in marine biofilms and likely all other habitats containing diverse eukaryotic microbial communities.
Tafazzin—an acyltransferase—is involved in cardiolipin (CL) remodeling. CL is associated with mitochondrial function, structure and more recently with cell proliferation. Various tafazzin isoforms exist in humans. The role of these isoforms in cardiolipin remodeling is unknown. Aim of this study was to investigate if specific isoforms like Δ5 can restore the wild type phenotype with respect to CL composition, cellular proliferation and gene expression profile. In addition, we aimed to determine the molecular mechanism by which tafazzin can modulate gene expression by applying promoter analysis and (Ingenuity Pathway Analyis) IPA to genes regulated by TAZ-deficiency. Expression of Δ5 and rat full length TAZ in C6-TAZ- cells could fully restore CL composition and—as proven for Δ5—this is naturally associated with restoration of mitochondrial respiration. A similar restoration of CL-composition could not be observed after re-expression of an enzymatically dead full-length rat TAZ (H69L; TAZMut). Re-expression of only rat full length TAZ could restore proliferation rate. Surprisingly, the Δ5 variant failed to restore wild-type proliferation. Further, as expected, re-expression of the TAZMut variant completely failed to reverse the gene expression changes, whereas re-expression of the TAZ-FL variant largely did so and the Δ5 variant to somewhat less extent. Very likely TAZ-deficiency provokes substantial long-lasting changes in cellular lipid metabolism which contribute to changes in proliferation and gene expression, and are not or only very slowly reversible.
Non-alcoholic fatty liver disease (NAFLD) is gaining in importance and is linked to obesity.
Especially, the development of fibrosis and portal hypertension in NAFLD patients requires treatment.
Transgenic TGR(mREN2)27 rats overexpressing mouse renin spontaneously develop NAFLD with
portal hypertension but without obesity. This study investigated the additional role of obesity in this
model on the development of portal hypertension and fibrosis. Obesity was induced in twelve-week
old TGR(mREN2)27 rats after receiving Western diet (WD) for two or four weeks. Liver fibrosis
was assessed using standard techniques. Hepatic expression of transforming growth factor-β1
(TGF-β1), collagen type Iα1, α-smooth muscle actin, and the macrophage markers Emr1, as well as
the chemoattractant Ccl2, interleukin-1β (IL1β) and tumor necrosis factor-α (TNFα) were analyzed.
Assessment of portal and systemic hemodynamics was performed using the colored microsphere
technique. As expected, WD induced obesity and liver fibrosis as confirmed by Sirius Red and Oil Red
O staining. The expression of the monocyte-macrophage markers, Emr1, Ccl2, IL1β and TNFα were
increased during feeding of WD, indicating infiltration of macrophages into the liver, even though this
increase was statistically not significant for the EGF module-containing mucin-like receptor (Emr1)
mRNA expression levels. Of note, portal pressure increased with the duration of WD compared
to animals that received a normal chow. Besides obesity, WD feeding increased systemic vascular
resistance reflecting systemic endothelial and splanchnic vascular dysfunction. We conclude that
transgenic TGR(mREN2)27 rats are a suitable model to investigate NAFLD development with liver
fibrosis and portal hypertension. Tendency towards elevated expression of Emr1 is associated with
macrophage activity point to a significant role of macrophages in NAFLD pathogenesis, probably
due to a shift of the renin–angiotensin system towards a higher activation of the classical pathway.The hepatic injury induced by WD in TGR(mREN2)27 rats is suitable to evaluate different stages of
fibrosis and portal hypertension in NAFLD with obesity
We analyzed the proteomic response of the Gram-negative fish pathogen A. salmonicida to iron limitation, an elevated incubation temperature, and the antibiotic florfenicol. Proteins from different subcellular fractions (cytosol, inner membrane, outer membrane, extracellular and outer membrane vesicles) were enriched and analyzed. We identified several iron-regulated proteins that were not reported in the literature for A. salmonicida before. We could also show that hemolysin, an oxidative-stress-resistance chaperone, a putative hemin receptor, an M36 peptidase, and an uncharacterized protein were significantly higher in abundance not only under iron limitation but also with an elevated incubation temperature. This may indicate that these proteins involved in the infection process of A. salmonicida are induced by both factors. The analysis of the outer membrane vesicles (OMVs) with and without applied stresses revealed significant differences in the proteomes. OMVs were smaller and contained more cytoplasmic proteins after antibiotic treatment. After cultivation with low iron availability, several iron-regulated proteins were found in the OMVs, indicating that A. salmonicida OMVs potentially have a function in iron acquisition, as reported for other bacteria. The presence of iron-regulated transporters further indicates that OMVs obtained from ‘stressed’ bacteria might be suitable vaccine candidates that induce a protective anti-virulence immune response.
Osmotic changes are common challenges for marine microorganisms. Bacteria have developed numerous ways of dealing with this stress, including reprogramming of global cellular processes. However, specific molecular adaptation mechanisms to osmotic stress have mainly been investigated in terrestrial model bacteria. In this work, we aimed to elucidate the basis of adjustment to prolonged salinity challenges at the proteome level in marine bacteria. The objects of our studies were three representatives of bacteria inhabiting various marine environments, Shewanella baltica, Vibrio harveyi and Aliivibrio fischeri. The proteomic studies were performed with bacteria cultivated in increased and decreased salinity, followed by proteolytic digestion of samples which were then subjected to liquid chromatography with tandem mass spectrometry analysis. We show that bacteria adjust at all levels of their biological processes, from DNA topology through gene expression regulation and proteasome assembly, to transport and cellular metabolism. The finding that many similar adaptation strategies were observed for both low- and high-salinity conditions is particularly striking. The results show that adaptation to salinity challenge involves the accumulation of DNA-binding proteins and increased polyamine uptake. We hypothesize that their function is to coat and protect the nucleoid to counteract adverse changes in DNA topology due to ionic shifts.
The anaerobic bacterium Clostridioides difficile represents one of the most problematic pathogens, especially in hospitals. Dysbiosis has been proven to largely reduce colonization resistance against this intestinal pathogen. The beneficial effect of the microbiota is closely associated with the metabolic activity of intestinal microbes such as the ability to transform primary bile acids into secondary ones. However, the basis and the molecular action of bile acids (BAs) on the pathogen are not well understood. We stressed the pathogen with the four most abundant human bile acids: cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA) and lithocholic acid (LCA). Thin layer chromatography (TLC), confocal laser scanning microscopy (CLSM), and electron microscopy (EM) were employed to track the enrichment and destination of bile acids in the bacterial cell. TLC not only revealed a strong accumulation of LCA in C. difficile, but also indicated changes in the composition of membrane lipids in BA-treated cells. Furthermore, morphological changes induced by BAs were determined, most pronounced in the virtually complete loss of flagella in LCA-stressed cells and a flagella reduction after DCA and CDCA challenge. Quantification of both, protein and RNA of the main flagella component FliC proved the decrease in flagella to originate from a change in gene expression on transcriptional level. Notably, the loss of flagella provoked by LCA did not reduce adhesion ability of C. difficile to Caco-2 cells. Most remarkably, extracellular toxin A levels in the presence of BAs showed a similar pattern as flagella expression. That is, CA did not affect toxin expression, whereas lower secretion of toxin A was determined in cells stressed with LCA, DCA or CDCA. In summary, the various BAs were shown to differentially modify virulence determinants, such as flagella expression, host cell adhesion and toxin synthesis. Our results indicate differences of BAs in cellular localization and impact on membrane composition, which could be a reason of their diverse effects. This study is a starting point in the elucidation of the molecular mechanisms underlying the differences in BA action, which in turn can be vital regarding the outcome of a C. difficile infection.
The increasing demand for new and effective antibiotics requires intelligent strategies to obtain a wide range of potential candidates. Laccase-catalyzed reactions have been successfully applied to synthesize new β-lactam antibiotics and other antibiotics. In this work, laccases from three different origins were used to produce new aminoglycoside antibiotics. Kanamycin, tobramycin and gentamicin were coupled with the laccase substrate 2,5-dihydroxy-N-(2-hydroxyethyl)-benzamide. The products were isolated, structurally characterized and tested in vitro for antibacterial activity against various strains of Staphylococci, including multidrug-resistant strains. The cytotoxicity of these products was tested using FL cells. The coupling products showed comparable and, in some cases, better antibacterial activity than the parent antibiotics in the agar diffusion assay, and they were not cytotoxic. The products protected mice against infection with Staphylococcus aureus, which was lethal to the control animals. The results underline the great potential of laccases in obtaining new biologically active compounds, in this case new antibiotic candidates from the class of aminoglycosides.
Microglia are the resident immune cells of the central nervous system (CNS) and play a major role in the regulation of brain homeostasis. To maintain their cellular protein homeostasis, microglia express standard proteasomes and immunoproteasomes (IP), a proteasome isoform that preserves protein homeostasis also in non-immune cells under challenging conditions. The impact of IP on microglia function in innate immunity of the CNS is however not well described. Here, we establish that IP impairment leads to proteotoxic stress and triggers the unfolded and integrated stress responses in mouse and human microglia models. Using proteomic analysis, we demonstrate that IP deficiency in microglia results in profound alterations of the ubiquitin-modified proteome among which proteins involved in the regulation of stress and immune responses. In line with this, molecular analysis revealed chronic activation of NF-κB signaling in IP-deficient microglia without further stimulus. In addition, we show that IP impairment alters microglial function based on markers for phagocytosis and motility. At the molecular level IP impairment activates interferon signaling promoted by the activation of the cytosolic stress response protein kinase R. The presented data highlight the importance of IP function for the proteostatic potential as well as for precision proteolysis to control stress and immune signaling in microglia function.
Clostridioides difficile is the leading cause of antibiotic-associated diarrhea referring to infections of the gastrointestinal tract in the course of (broad-spectrum)antibiotic therapy. While antibiotic therapy, preferentially with fidaxomicin or vancomycin, often stops the acute infection, recurrence events due to remaining spores and biofilm-associated cells are observed in up to 20% of cases. Therefore, new antibiotics, which spare the intestinal microbiota and eventually clear infections with C. difficile are urgently required. In this light, the presented work aimed at the evaluation and characterization of three natural product classes, namely chlorotonils, myxopyronins and chelocardins, with respect to their antimicrobial activity spectrum under anaerobic conditions and their potential for the therapy of C. difficile infections. Briefly, compounds of all three classes were screened for their activity against a panel of anaerobic bacteria. Subsequently, the systemic effects of selected derivatives of each compound class were analyzed in C. difficile using a proteomics approach. Finally, appropriate downstream experiments were performed to follow up on hypotheses drawn from the proteomics datasets. Thereby, all three compound classes demonstrated significant activity against C. difficile. However, chelocardins similarly inhibited the growth of other anaerobes excluding chelocardins as antibiotic candidates for C. difficile infection therapy. In contrast, chlorotonils demonstrated significantly higher in vitro activity against C. difficile and close relatives compared to a small panel of other anaerobes. In addition, it could be shown that chlorotonils affect intracellular metal homeostasis as demonstrated in a multi-omics approach. The data led to speculate that chlorotonils eventually affect cobalt and selenate availability in particular. Moreover, a metaproteomics approach verified that oral chlorotonil treatment only marginally affected the intestinal microbiota of piglets on taxonomic and functional level. Furthermore, the proteome stress response of C. difficile 630 to myxopyronin B, which similarly showed elevated activity against C. difficile compared to a few other anaerobes, indicated that the antibiotic inhibited early toxin synthesis comparatively to fidaxomicin. Finally, evidence is provided that C. difficile 630 responds to dissipation of its membrane potential by production and accumulation of aromatic metabolites.
The order of bats (Chiroptera) account for ~20% of all mammalian species and attracted immense global attention due to their identification as important viral reservoir. Bats can harbour a plethora of high-impact zoonotic viruses, such as filoviruses, lyssaviruses, and coronaviruses without displaying clinical signs of disease themselves. Given this striking diversity of the bat virome, their ability of self-powered flight, and global distribution, understanding chiropteran immunity is essential to facilitate assessment of future spillover events and risks.
However, scarcity of bat-specific or cross-reactive tools and standardized model systems impede progress until today. Furthermore, the richness of species led to generation of isolated datasets, hampering data interpretation and identification of general immune mechanisms, applicable for various chiropteran suborders/families. The key to unlocking bat immunity are coordinated research approaches that comprehensively define immunity in several species. In this work, an in-depth study of innate and adaptive immune mechanisms in the fructivorous Egyptian Rousette bat (Rousettus aegyptiacus, ERB) is presented.
Detailed stability analyses identified EEF1A1 as superior reference gene to ACTB, and GAPDH, which rendered unstable upon temperature increase or presence of type-I-IFN. Since the body core temperatures of pteropid bats reach from 35°C to 41°C and it has been postulated that bats display constitutive expression of IFNs, a suitable reference gene has to be stable under these physiologically relevant conditions. To study cellular innate immunity in detail, cell lines from the nasal epithelium, the olfactory compartment and the cerebrum were generated. To include immune responses of epithelia cells, essential for immunity at sites of primary viral infection, primary epithelia cells from the nasal epithelium, trachea, lung and small intestine were generated. Cellular identities were determined by comprehensive analyses of transcripts and proteins expressed by each cell line. The capacity of each cell line to produce type-I- and III-IFNs was assessed at 37°C and 40°C upon stimulation with viral mimetics. This revealed cell type-dependent differences is the capability to express IFNs upon stimulation. Furthermore, the constitutive expression of type-I- and III-IFNs was significantly elevated in higher temperatures and quantified at mRNA copy levels. To characterize ERB innate immunity upon infection with high-impact zoonotic viruses, cells from the nasal epithelium, the olfactory system, and the brain were infected with several lyssaviruses. This revealed striking differences in susceptibility: cells from the nasal epithelium rendered least whereas cells from the olfactory epithelium rendered most susceptible to viral infection and replication. Additionally, due to a lack of IFN expression in infected cells, it could be shown that LBV possibly possesses advanced strategies to ensure successful replication in ERB cells. Since the current SARS-CoV-2 pandemic put bats even further in the focus of zoonotic research, primary epithelial cells and animals were infected with this virus to monitor ERB-specific immune transcripts in cells and tissues. These studies revealed a notably early IFNG expression in the respiratory tract of infected individuals.
To understand immunomaturation in bats, the immune cell landscape in periphery and various tissue in adult and juvenile ERB was analyzed by flow cytometry and scRNA-seq, revealing intriguing, age-dependent variations in the abundance of granulocytes and lymphocytes. Flow cytometry revealed a significantly higher number of granulocytes in adults, as well as higher numbers of B cells in juveniles. scRNA-seq allowed detailed identification of different leukocyte subsets, uncovering the presence of highly-abundant NKT-like cells and a unique PLAC8 expressing B cell population. A functional characterization of phagocytic cells and lymphocytes derived from adult and juvenile ERB revealed no significant differences in cellular functionality.
In conclusion, the presented work demonstrated suitability of all established ERB cell lines to study bat immunity in vitro, which led to striking findings regarding IFN expression at steady state, or upon stimulation or viral infection. In addition, established qRT-PCR protocols allowed definition of constitutive and temperature-dependent elevation of IFN expression magnitudes, as well as insights into expression of immune-related transcripts in SARS-CoV-2 infected ERB. Finally, based on optimized scRNA-seq technologies and flow cytometry, frequencies and absolute cell counts could be determined in ERB of different ages, revealing e.g. age-dependent variations in leukocyte profile compositions.
Avian influenza viruses (AIVs) have their natural reservoir in wild aquatic birds but occasionally
spread to terrestrial poultry. While AIVs of subtypes H5 and H7 are well known to evolve highly
pathogenic avian influenza viruses (HPAIVs) during circulation in domestic birds, non-H5/H7
subtypes exhibit only a low to moderate pathogenicity. Furthermore, spillover events to a broad
range of mammalian hosts, including humans, with self-limiting to severe illness or even fatal
outcomes, were reported for non-H5/H7 AIVs and pose a pandemic risk. The evolution of high
virulent phenotypes in poultry and the adaptation of AIVs to mammalian hosts are predominantly
linked to genetic determinants in the hemagglutinin (HA). The acquisition of a polybasic cleavage
site (pCS) is a prerequisite for the evolution of HPAIVs in poultry, while changes in the receptor
binding preference and virus stability are essential for adaptation of AIVs to mammals.
In August 2012, an H4N2 virus with the pCS motif 322PEKRRTR/G329 but preserved trypsin
dependend replication and low pathogenicity in chickens was isolated on a quail farm in California.
In the first two publications, we followed different approaches to investigate virulence factors and
the potential risk for the transition of H4N2 to high virulence in chickens. The loss of N-terminal
glycosylations in the vicinity of the pCS resulted in decreased binding to avian-like receptors and
dramatically decreased virus stability. On the other hand, one deglycosylation increased virus
replication and tissue tropism in chicken embryos but did not alter virulence or excretion in
chickens. Furthermore, additional basic amino acids in the natural pCS motif improved the trypsin-independent
cleavage of HA and caused slightly increased tissue tropism in chickens. However,
the engineered motifs alone did not affect virulence in chickens. Intriguingly, they even had a
detrimental effect on virus fitness, which was restored after reassortment with segments of HPAIV
H5N1. Together, the results show the importance of HA glycosylations on the stability of H4N2 and
reveal the important role of non-HA segments in the transition of this virus to high virulence in
poultry.
The transmission of another non-H5/H7 AIV of subtype H10N7 from birds to seals resulted in mass
deaths in harbor seals in 2014 in northern Europe. The third publication describes nine mutations
in the HA1 subunit of seal isolates compared to avian H10Nx viruses. We found that some of these
mutations conferred a dual specificity for avian and mammalian receptors and altered
thermostability. Nevertheless, the H10N7seal remained more adapted to avian host cells, despite
of the alteration in the receptor binding specificity.
Altogether, this thesis demonstrates that naturally evolved AIVs beside H5 and H7 subtypes
support a highly pathogenic phenotype in the appropriate viral background and alter virulence and
host receptor specificity by few amino acid substitutions in the HA. These findings improve our
knowledge of the potential of non-H5/H7 AIVs to shift to high virulence in birds and the adaptation
in mammals.
In vitro and in vivo analyses of mono- and mixed-species biofilms formed by microbial pathogens
(2022)
Microbial biofilms can be defined as multicellular clusters of microorganisms embedded in a self-produced extracellular matrix (ECM), which is primarily composed of polymeric biomolecules. Biofilms represent one of the most severe burdens in both industry and healthcare worldwide, causing billions of dollars of treatment costs annually because biofilms are inherently difficult to prevent, treat, and eradicate. In health care settings, patients suffering from cystic fibrosis, or patients with medical implants are highly susceptible to biofilm infections. Once a biofilm is formed, it is almost impossible to quantitatively eradicate it by mechanical, enzymatical, chemical, or antimicrobial treatment. Often the only remaining option to fully eradicate the biofilm is removing of the infected implant or body part. The primary reasons for the inherent resistance of biofilms against all forms of antimicrobial treatment are (I) a reduced metabolic activity of biofilm-embedded cells climaxing in the presence of metabolic inactive persister cells, as well as (II) the protective nature of the biofilm matrix acting as a (diffusion) barrier against antimicrobials and the host immune system. Consequently, there is an urgent need to better understand microbial biofilms from a structural and (patho-) physiological point of view in order to be able to develop new treatment strategies.
Therefore, the aims of this study were to investigate fundamental physiological properties of different clinically relevant single and multi-species biofilms, both in vitro and in vivo. Furthermore, the effectiveness of a novel treatment strategy using cold atmospheric pressure plasma was evaluated in vitro to treat biofilms of the pathogenic fungus C. albicans.
In article I, the intracellular and ECM protein inventory of Staphylococcus aureus during in vitro biofilm growth in a flow reactor was analyzed by liquid-chromatography coupled to tandem mass-spectrometry (LC-MS/MS) analysis combined with metabolic footprint analysis. This analysis showed that anaerobiosis within biofilms releases organic acids lowering the ECM pH. This, in turn, leads to protonation of alkaline proteins – mostly ribosomal proteins originating from cell lysis as well as actively secreted virulence factors – resulting in a positive net charge of these proteins. As a consequence, these proteins accumulate within the ECM and form an electrostatic network with negatively charged cell surfaces, eDNA, and metabolites contributing to the overall biofilm stability.
In article II, the in vivo metaproteome of the multi-species biofilm community in cystic fibrosis sputum was investigated. To this end, an innovative protocol was developed allowing the enrichment of microbial cells, the extraction of proteins from a small amount of cystic fibrosis sputum, and subsequent metaproteome analysis. This protocol also allows 16S sequencing, metabolic footprint analysis, and microscopy of the same sample to complement the metaproteome data. Applying this protocol, we were able to significantly enhance microbial protein coverage providing first insights into important physiological pathways during CF lung infection. A key finding was that the arginine deaminase pathway as well as microbial proteases play a so far underappreciated role in CF pathophysiology.
In articles III and IV, a novel treatment strategy for biofilms formed by the important fungal pathogen Candida albicans was evaluated in vitro. Biofilms were treated with two different sources of nonthermal plasma (with the Nonthermal Plasma Jet “kINPen09” as well as with the Microwave-induced plasma torch “MiniMIP”) and the effect on growth, survival, and viability was assessed by counting colony-forming units (CFU), by cell proliferation assays, as well as by live/dead staining combined with fluorescence microscopy, confocal laser scanning microscopy, (CLSM) and atomic force microscopy (AFM). These tests revealed that biofilms were effectively inactivated mostly on the bottom side of biofilms, indicating a great potential of these two plasma sources to fight biofilms.
Compared to other human pathogens, S. aureus outstands with a remarkably broad spectrum of deseases: from minor skin infections over endocarditis, pneumoniae, and osteomyelitis, to septic shock. The prerequisite is an arsenal of adaptation strategies, encoded in the core and variable genome. It includes the coordinated expression of adhesins and toxins, evasion of the immune system, response to stress and starvation, adaptation of the metabolism, formation of biofilms and capsules, antibiotic resistance, and persistence on the skin, in nasal epithelial cells, and even in the inner of macrophages after phagocytosis. All these adaptation strategies enable S. aureus to colonize a diversity of niches within the human host. The inevitable requirement is the ability to activate the appropriate adaptation strategy at the right time and at the right place. S. aureus overcomes this challenge with a sophisticated regulatory network. This PhD thesis covers a broad spectrum of transcriptional regulators, involved in S. aureus pathogenesis: (1) the quorum sensing system Agr (regulation of early- and late stage virulence factors), (2) the Sar family (regulation of early- and late stage virulence factors), (3) SaeRS (regulation of accessory exotoxins and adhesins), (4) CodY (response to amino acid starvation, including extracellular proteases), (5) Sigma B (general stress response, including virulence factors), (6) Rex (anaerobic energy metabolism), (7) CtsR and HrcA (protein quality control), (8) PerR and Fur (oxidative stress response), and (9) antibiotic resistance. Traditionally, Proteomics constitute the long-lasting reputation of the Institute. In fact, the majority of investigations presented in this PhD thesis was initialized by proteomic analyses as the ultimate starting point. From the first day, a major goal of this PhD thesis was to add regulator-promoter interaction studies to the methodical spectrum. In particular, to complement transcriptomic and proteomic results by answering the logical follow-up question: Which regulator is responsible for the observed changes in gene expression and protein synthesis after application of a specific stimulus?
The first chapter provides specific analyses for three major regulators: Rex, CodY, and SarA. Publications were achieved for Rex (Hecker et al., 2009; Pagels et al., 2010). Results were mainly achieved by establishing regulator-promoter interaction methods (in particular EMSA and “footprinting”). Additionally, this chapter describes method development of a novel easy-to-apply method, named REPA (restriction endonuclease protection assay).
The second chapter presents method development for the genome-wide identification of regulator-promoter interactions, named “global footprinting”. This approach combines two already well-established methods: (A) Purification of a recombinant Strep-tagged regulator via Strep-tag affinity chromatography. The modification in “global footprinting” is to incubate the regulator with fragmented genomic S. aureus DNA, resulting in co-purification and enrichment of DNA streches with specific regulator binding sites. (B) Identification and quantification of these DNA streches via “next generation sequencing” (NGS). Using this combined approach, this PhD thesis was able to localize the most affine promoter binding site for the regulator Rex precisely down to one single base pair across the whole S. aureus genome.
The third chapter describes the assembly of a data library, collecting the majority of DNA microarray data and regulator-promoter interaction studies from the worldwide literature. This data library summarizes more than 50,000 regulatory events and more than 2,000 regulator binding sites. As published in the perspectives in Fuchs et al. (2018), this data library can be incorporated into the free-accessible online data base “Aureowiki” (provided and maintained by the Department of Functional Genomics, University of Greifswald). The major effort is the consolidation of these “big data” via in silico cluster analysis, comparing 282 different experimental conditions at once. The major finding of this analysis is the identification of seven functional and regulatory gene clusters in S. aureus pathogenesis that are conserved across S. aureus strain diversity. These findings allowed the creation of a prediction tool, to provide novel experimental starting points for the worldwide S. aureus research community. This prediction tool was successfully applied on several topics, and partially published: functional and regulatory prediction for a set of 20 selected lipoproteins as potential virulence factors (Graf et al., 2018), and prediciton of protein complexes (Liang et al., 2016).
Alltogether, this PhD thesis provides new insights into the molecular mechanisms of three pathogenesis-relevant regulators: Rex, CodY, and SarA. It describes the development of three novel experimental methods for wet and dry lab applications that can be used on research topics beyond S. aureus: REPA, “global footprinting”, and cluster analysis. Finally, cluster analysis identifies seven conserved fuctional and regulatory gene clusters, involved in S. aureus pathogenesis. This cluster anaysis is used as a prediction tool to provide novel experimental starting points, and to predict the physiological mode of action of newly discovered anti-staphylococcal agents.
A significant fraction of the decaying algal biomass in marine ecosystems is expected to be mineralized by particle-associated (PA) heterotrophic bacterial communities, which are thus greatly contributing to large-scale carbon fluxes. Whilst numerous studies have investigated the succession of free-living (FL) marine bacteria, the community structure and functionality of PA bacterial communities remained largely unexplored and knowledge on specific contributions of these microorganisms to carbon cycling is still surprisingly limited. This has mostly been due to technical problems, i.e., caused by the enormous complexity of marine particles and the high abundance of eukaryotic microorganisms within these particles. This thesis presents (a) an optimized metaproteomics protocol for an in-depth characterization of marine PA bacteria, (b) an application example with FL and PA communities sampled during a spring phytoplankton bloom in 2009 in the North Sea, which confirmed the reliability of the optimized metaproteomic workflow, (c) the metaproteomic analysis of particulate communities sampled during a spring phytoplankton bloom in 2018, resulting in an as yet unprecedented number of identified protein groups of the bacterial response bloom and (d) a proteomic analysis of a PA bacterial isolate grown on the two naturally abundant marine polysaccharides laminarin and alginate. The observed succession of bacterial clades during metaproteomic analyses of the investigated blooms highlights individual niche occupations, also visible on genus level. Additionally, functional data shows evidence for the degradation of different marine polysaccharides e.g., laminarin, alginate and xylan supporting the important role of PA bacteria during the turnover of oceanic organic matter. Furthermore, most of the identified functions fit well with the current understanding of the ecology of an algal- or surface-associated microbial community, additionally highlighting the importance of phytoplankton-bacterial interactions in the oceans. More detailed insights into the metabolism of PA bacteria were gained by the proteomic characterization of a selected PA bacterial isolate grown on laminarin and alginate. Functional analyses of the identified proteins suggested that PA bacteria employ more diverse degradation systems partially different from the strategies used by FL bacteria.
Gram-negative bacteria are known to naturally produce outer membrane vesicles (OMVs), which are closed nanoparticles (10 to 450 nm) containing virulence factors and pathogen associated molecular patterns (PAMPs). For over 20 years, OMVs of Neisseria meningitidis (N. meningitidis), in combination with three purified outer membrane proteins, have been successfully used as parts of human vaccines which illustrates the safety and potential of OMV based vaccines. So far only little is known about the OMVs of fish pathogenic bacteria. The production of OMVs has been described for the fish pathogenic gram-negative bacterium Aeromonas salmonicida (A. salmonicida) which is the causative agent of furunculosis resulting in high morbidity and mortality of salmonid fish. The immunostimulatory potential of OMVs derived from A. salmonicida as well as the possibility of establishing an oral vaccine model in Oncorhynchus mykiss (O.mykiss) (Rainbow trout) has been investigated in this study by conducting in vitro and in vivo experiments. Innate immune cells such as macrophages are one of the first cells to respond to pathogens once they breach the skin barrier, therefore the monocyte/macrophage cell line RTS-11 as well as leukocytes from the head kidney, consisting of a high percentage of phagocytic cells have been investigated. Additionally, leukocytes isolated from the peritoneal cavity as the main target for injectable vaccines have been studied in the in vitro experiments. These experiments indicate that OMVs derived from A. salmonicida are recognized by the monocyte/macrophage cell line RTS-11 as well as by leukocytes from the head kidney resulting in significant changes of the mRNA expression pattern of early inflammatory markers (IL-1β, IL-6, IL-8, IL-10, TGFβ). Having used the established peritoneal inflammation model of rainbow trout it could be shown that intraperitoneal (i.p.) vaccination of rainbow trout with OMVs results in a similar local immune response, especially in the recruitment of myeloid cells, compared to the injection of inactivated bacteria. The systemic cellular immune response differed between the two vaccine groups, even though a similar humoral immune response could be observed. Interestingly, i.p.vaccination with 10 µg of OMVs resulted in similar antibody titers as observed for fish, that were i.p. vaccinated with 108 CFU of inactivated A. salmonicida. The similar antibody titers after vaccination with OMVs might be explained by a stronger activation of CD8- T cells (likely CD4+ T cells) in the head kidney as well as in the blood in the OMV vaccinated group alone, which might result in an increased stimulation of B cells to produce antibodies.
Oral vaccination has been described as the ideal vaccination method for fish, but only few vaccines for oral application are licensed. Therefore, the established oral model for vaccination of rainbow trout with attenuated viral hemorrhagic septicemia virus (VHSV) was adapted to be used for inactivated A. salmonicida, even though initial trials indicated great similarities in the cellular response after i.p. and oral vaccination with inactivated strains of A. salmonicida, particularly in the response of the myeloid cells and lymphocytes in the target organs as well as the thrombocytes in the spleen. This could not be confirmed in a second oral vaccination trial. These results show how challenging the development of oral vaccines for fish is. The main challenge is the reproducibility of reliable results, since this is influenced by the difference in uptake of vaccine pellets or antigen degradation in the gut. Future oral vaccine trials should investigate different vaccination regimes, e.g., consecutive feeding, or a different composition of vaccine pellets, in order to further investigate the possibility of establishing an oral vaccine model for trout and so that future vaccine candidates, like OMVs, can be reliably tested in fish.
Infectious diseases remain a significant threat to the wellbeing of humans and animals
worldwide. Thus, infectious disease outbreaks should be investigated to understand the
emergence of these pathogens, leading to prevention and mitigation strategies for future
outbreaks. High-throughput sequencing (HTS) and bioinformatic analysis tools are reshaping
the surveillance of viral infectious diseases through genome-based outbreak investigations. In
particular, analyzing generic HTS datasets using a metagenomic analysis pipeline enable
simultaneous identification, characterization, and discovery of pathogens.
In this thesis, generic HTS datasets derived from the 2018-19 WNV epidemic and USUV
epizooty in Germany were evaluated using a unified pipeline for outbreak investigation and an
early warning system (EWS). This pipeline obtained 34 West Nile virus (WNV) whole-genome
sequences and detected several sequences of Usutu virus (USUV) and other potential
pathogens. A few WNV and USUV genome sequences were completed using targeted HTS
approaches. Phylogenetic and phylogeographic inferences, reconstructed using WNV wholegenome sequences, revealed that Germany experienced at least six WNV introduction events.
The majority of WNV German variants clustered into the so-called “Eastern German clade
(EGC),” consisting of variants derived from birds, mosquitoes, a horse, and human cases. The
progenitors of the EGC subclade probably circulated within Eastern Europe around 2011. These
flavivirus genome sequences also provided substantial evidence for the first reported cases of
WNV and USUV co-infection in birds. Phylogenetic inferences of USUV genome sequences
showed the further spread of the USUV lineage Africa 3 and might indicate the overwintering
of the USUV lineage Europe 2 in Germany. Among viral sequences reported in the EWS, Hedwig
virus (HEDV; a novel peribunyavirus) and Umatilla virus (UMAV; detected in Europe for the
first time) were investigated using genome characterization, molecular-based screening, and
virus cultivation since these viruses were suspected of causing co-infections in WNV-infected
birds. The EWS detected overall 8 HEDV-positive and 15 UMAV-positive birds in small sets of
samples, and UMAV could be propagated in a mosquito cell culture Future studies are necessary
to investigate the pathogenicity of these viruses and their role in the health of wild and captive
birds.
In conclusion, this study provided a proof-of-concept that the developed unified and
generic pipeline is an effective tool for outbreak investigation and pathogen discovery using the
same generic HTS datasets derived from outbreak and surveillance samples. Therefore, this
thesis recommends incorporating the unified pipeline in the key response to viral outbreaks to
enhance outbreak preparedness and response.
Permafrost-affected soil stores a significant amount of organic carbon. Identifying the biological constraints of soil organic matter transformation, e.g., the interaction of major soil microbial soil organic matter decomposers, is crucial for predicting carbon vulnerability in permafrost-affected soil. Fungi are important players in the decomposition of soil organic matter and often interact in various mutualistic relationships during this process. We investigated four different soil horizon types (including specific horizons of cryoturbated soil organic matter (cryoOM)) across different types of permafrost-affected soil in the Western Canadian Arctic, determined the composition of fungal communities by sequencing (Illumina MPS) the fungal internal transcribed spacer region, assigned fungal lifestyles, and by determining the co-occurrence of fungal network properties, identified the topological role of keystone fungal taxa. Compositional analysis revealed a significantly higher relative proportion of the litter saprotroph Lachnum and root-associated saprotroph Phialocephala in the topsoil and the ectomycorrhizal close-contact exploring Russula in cryoOM, whereas Sites 1 and 2 had a significantly higher mean proportion of plant pathogens and lichenized trophic modes. Co-occurrence network analysis revealed the lowest modularity and average path length, and highest clustering coefficient in cryoOM, which suggested a lower network resistance to environmental perturbation. Zi-Pi plot analysis suggested that some keystone taxa changed their role from generalist to specialist, depending on the specific horizon concerned, Cladophialophora in topsoil, saprotrophic Mortierella in cryoOM, and Penicillium in subsoil were classified as generalists for the respective horizons but specialists elsewhere. The litter saprotrophic taxon Cadophora finlandica played a role as a generalist in Site 1 and specialist in the rest of the sites. Overall, these results suggested that fungal communities within cryoOM were more susceptible to environmental change and some taxa may shift their role, which may lead to changes in carbon storage in permafrost-affected soil.
Out of Control: The Role of the Ubiquitin Proteasome System in Skeletal Muscle during Inflammation
(2021)
The majority of critically ill intensive care unit (ICU) patients with severe sepsis develop ICU-acquired weakness (ICUAW) characterized by loss of muscle mass, reduction in myofiber size and decreased muscle strength leading to persisting physical impairment. This phenotype results from a dysregulated protein homeostasis with increased protein degradation and decreased protein synthesis, eventually causing a decrease in muscle structural proteins. The ubiquitin proteasome system (UPS) is the predominant protein-degrading system in muscle that is activated during diverse muscle atrophy conditions, e.g., inflammation. The specificity of UPS-mediated protein degradation is assured by E3 ubiquitin ligases, such as atrogin-1 and MuRF1, which target structural and contractile proteins, proteins involved in energy metabolism and transcription factors for UPS-dependent degradation. Although the regulation of activity and function of E3 ubiquitin ligases in inflammation-induced muscle atrophy is well perceived, the contribution of the proteasome to muscle atrophy during inflammation is still elusive. During inflammation, a shift from standard- to immunoproteasome was described; however, to which extent this contributes to muscle wasting and whether this changes targeting of specific muscular proteins is not well described. This review summarizes the function of the main proinflammatory cytokines and acute phase response proteins and their signaling pathways in inflammation-induced muscle atrophy with a focus on UPS-mediated protein degradation in muscle during sepsis. The regulation and target-specificity of the main E3 ubiquitin ligases in muscle atrophy and their mode of action on myofibrillar proteins will be reported. The function of the standard- and immunoproteasome in inflammation-induced muscle atrophy will be described and the effects of proteasome-inhibitors as treatment strategies will be discussed.
Over thirty years have passed since the first description of ubiquitin-positive structures in the brain of patients suffering from Alzheimer’s disease. Meanwhile, the intracellular accumulation of ubiquitin-modified insoluble protein aggregates has become an indisputable hallmark of neurodegeneration. However, the role of ubiquitin and a fortiori the ubiquitin-proteasome system (UPS) in the pathogenesis of neurodevelopmental disorders (NDD) is much less described. In this article, we review all reported monogenic forms of NDD caused by lesions in genes coding for any component of the UPS including ubiquitin-activating (E1), -conjugating (E2) enzymes, ubiquitin ligases (E3), ubiquitin hydrolases, and ubiquitin-like modifiers as well as proteasome subunits. Strikingly, our analysis revealed that a vast majority of these proteins have a described function in the negative regulation of the innate immune response. In this work, we hypothesize a possible involvement of autoinflammation in NDD pathogenesis. Herein, we discuss the parallels between immune dysregulation and neurodevelopment with the aim at improving our understanding the biology of NDD and providing knowledge required for the design of novel therapeutic strategies.
An Innovative Protocol for Metaproteomic Analyses of Microbial Pathogens in Cystic Fibrosis Sputum
(2021)
Hallmarks of cystic fibrosis (CF) are increased viscosity of mucus and impaired mucociliary clearance within the airways due to mutations of the cystic fibrosis conductance regulator gene. This facilitates the colonization of the lung by microbial pathogens and the concomitant establishment of chronic infections leading to tissue damage, reduced lung function, and decreased life expectancy. Although the interplay between key CF pathogens plays a major role during disease progression, the pathophysiology of the microbial community in CF lungs remains poorly understood. Particular challenges in the analysis of the microbial population present in CF sputum is (I) the inhomogeneous, viscous, and slimy consistence of CF sputum, and (II) the high number of human proteins masking comparably low abundant microbial proteins. To address these challenges, we used 21 CF sputum samples to develop a reliable, reproducible and widely applicable protocol for sputum processing, microbial enrichment, cell disruption, protein extraction and subsequent metaproteomic analyses. As a proof of concept, we selected three sputum samples for detailed metaproteome analyses and complemented and validated metaproteome data by 16S sequencing, metabolomic as well as microscopic analyses. Applying our protocol, the number of bacterial proteins/protein groups increased from 199-425 to 392-868 in enriched samples compared to nonenriched controls. These early microbial metaproteome data suggest that the arginine deiminase pathway and multiple proteases and peptidases identified from various bacterial genera could so far be underappreciated in their contribution to the CF pathophysiology. By providing a standardized and effective protocol for sputum processing and microbial enrichment, our study represents an important basis for future studies investigating the physiology of microbial pathogens in CF in vivo – an important prerequisite for the development of novel antimicrobial therapies to combat chronic recurrent airway infection in CF.
Ebolaviruses are zoonotic pathogens causing severe hemorrhagic fevers in humans
and non-human primates with high case fatality rates. In recent years, the number and
scope of outbreaks has increased, highlighting the importance of better understanding
the molecular aspects of ebolaviral infection and host cell interactions in order to be able to better control this virus.
To facilitate virus genome replication, transcription and protein expression,
ebolaviruses recruit and interact with specific host factors. These interactions play a key role in viral infection and influence virus survival and disease outcome. Based on a genome-wide siRNA screen, the three host factors CAD, NXF1 and UAP56 were
recently identified to be involved in ebolavirus genome replication and/or transcription
and/or mRNA-translation. However, mechanistical details of how these host factors
affect the ebolavirus lifecycle remained elusive.
In this thesis I analyzed the functional interactions between EBOV and these newly
identified host proteins in order to better understand the virus-host interface. To this
end I used siRNA knockdown as well as overexpression of these host proteins in
combination with different reverse-genetics based lifecycle modelling assays to
investigate the influence of CAD, NXF1 and UAP56 on individual aspects of the EBOV
lifecycle. Using these systems in relation with a host factor knockdown I was able to
show that the provision of pyrimidines by CAD plays an important role for both EBOV
genome replication and transcription, whereas NXF1 is predominantly required for
mRNA transport. I furthermore used immunofluorescence analysis to examine whether
these host factors are recruited by one or more EBOV proteins to inclusion bodies,
which represent physical sites of ebolavirus genome replication. During these
experiments, I was able to show that CAD and NXF1, and possibly also UAP56, are
recruited to EBOV inclusion bodies in order to fulfill their individual function for EBOV RNA synthesis or later steps in protein expression. Additionally, I was able to show that the uptake of NXF1 into NP-induced inclusion bodies is most likely mediated via the C-terminal domain of NP, and that the FG-repeat interaction domains of NXF1 are sufficient for recruitment. Further, my data indicate that RNA interaction of both NXF1 and NP is not required for this process, but rather important for exit of NXF1 from inclusion bodies. I therefore suggest that the viral mRNA is transferred in inclusionbodies from NP to NXF1, which leads to a rapid export of the NXF1 packed viral mRNA into the cytosol for mRNA translation.
The exact mechanism of how these host factors are recruited into inclusion bodies and whether they have similar functions in the lifecycle of other negative-sense RNA viruses still needs to be investigated. Nevertheless, this study increases our understanding of virus-host interaction of ebolaviruses, and thus helps to identify targets for the development of novel therapeutics against these viruses.
LPAIV H9N2 and HPAIV H5N8 clade 2.3.4.4 viruses have been frequently isolated from domestic and wild birds in Germany and they are endemic in poultry worldwide. H9N2 is known to donate gene segments to other AIV with high case fatality rate in humans (e.g. H5N1, H7N9). Similarly, H5N8 devastated poultry worldwide since 2014 and has been recently isolated from humans. Therefore, it is important to understand the genetic predisposition for adaptation of H9N2 and H5N8 AIV in poultry and mammals. In the first publication, we focused on the variable hemagglutinin cleavage site (HACS) of European and Non-European H9N2 viruses, since the HACS is a main virulence determinant of AIV in birds. We found a preferential substitution of non-basic amino acids (G, A, N, S, D, K) in the HACS at position 319 of European H9N2 viruses compared to non-European H9N2 viruses. Recombinant viruses carrying different non-basic amino acids in the HACS modulated replication in vitro. While these non-basic amino acids did not affect virulence or transmission in chickens, they modulated virulence and replication in turkeys. Moreover, H9N2 viruses with non-basic amino acids in the HACS were able to replicate in mammalian brain cells for multiple cycles even without trypsin. In the second publication, we addressed the question whether reassortment between two recent German H9N2 and H5N8 clade 2.3.4.4. B viruses is possible and analysed the impact on virus fitness in mammals and birds. We found that H9N2 PB1 and NP segments were not compatible to generate infectious H5N8 viruses and this incompatibility was due to mutations outside the packaging region. However, H9N2 NS alone or in combination with PB2 and PA significantly increased replication of H5N8 in human cells. Moreover, H9N2 PB2, PA and/or NS segments increased virulence of H5N8 in mice. Interestingly, in chickens, reassortment with H9N2 gene segments, particularly NS, partially or fully impaired chicken-to-chicken transmission. These results indicate that the evolution of H9N2/H5N8 reassortants showing high virulence for mammals is unlikely to occur in chickens. In the third publication, we focused on the NS1 protein of different HPAIV H5N8 clade 2.3.4.4 viruses from 2013 to 2019 and studied the impact of its C-terminus (CTE) variation on virus fitness in chickens and ducks. Our findings revealed a preferential selection for a certain NS1 CTE length in 2.3.4.4. H5N8 clade A (237 aa) and B (217 aa) viruses over the common length of 230 aa. Indeed, the NS1 CTE can affect virus virulence and pathogenesis in a species and virus clade dependent manner. In chickens, although there was no impact on virulence, NS1 CTE of H5N8-A and H5N8-B, regardless of the length, have evolved towards higher efficiency to block the IFN response. In ducks, NS1 CTE contributed to efficient transmission, replication and high virulence of H5N8-B. In the fourth publication, we assessed the impact of variable length of NS1 on H5N8 virus replication in human cells and virulence in mice. We showed that NS1 of H5N8-B virus unlike the vast majority of NS1 of AIV, shared preferences for short NS1 similar to human and zoonotic influenza viruses. This virus (i) was able to efficiently block IFN and apoptosis induction which might be the first steps for efficient adaptation to human cells and (ii) without prior adaptation replicated at higher levels and was more virulent in mice than H5N8-A. The virulence of the latter virus increased after shortening the NS1 similar to H5N8-B virus. Therefore, it is conceivable that truncation in NS1 is a determinant for adaptation of H5N8 in mammals irrespective of its impact on virus fitness in poultry. Findings in this dissertation indicated that HA mutations in the European H9N2 and NS1 variations in H5N8 viruses play a role in virus fitness in poultry and/or mammals. These results improve our current understanding for AIV adaptation and are useful to assess the potential of these viruses to infect mammals.
The genus Capripoxvirus of the family Poxviridae consists of the species lumpy skin disease virus, sheeppox virus and goatpox virus that affect cattle, sheep and goats, respectively. Whereas lumpy skin disease virus (LSDV) is transmitted mainly mechanically via blood-feeding insects and possibly hard ticks, the major transmission routes of sheeppox virus (SPPV) and goatpox virus (GTPV) are via direct contact and aerosols. Affected animals develop fever and display clinical signs such as ocular and nasal discharge, lymphadenopathy and characteristic lesions of the skin. Severe clinical course, especially in combination with respiratory signs, can result in the death of the affected animals. In endemic regions, mortality of capripox virus-induced diseases is low (1-10%). However, mortalities of up to 75% have been reported for LSDV and up to 100% for SPPV and GTPV in exotic breeds and high-producing dairy or beef animals. The loss of quality of the leather, reduced weight gain and milk yield as well as complete loss of affected animals have severe impact on national and global economies. Therefore, capripox virus-induced diseases have significant impact on both the affected individual animal as well as on the existence of small-scale farmers and large agricultural enterprises. However, until now, only live attenuated vaccines are commercially available. These attenuated vaccines are not authorized in the European Union and their administration would comprise the disease-free status of the respective country. Thus, reliable diagnostic tools for the detection and characterization of capripox viruses as well as safe and efficient control measures are of high importance.
The objectives of the present thesis were the development, validation and comparison of diagnostic tools, the establishment of challenge infection models and the performance of pathogenesis studies for all three capripox virus species, and the development and testing of different inactivated prototype vaccine candidates against LSDV.
First, new real-time quantitative polymerase chain reaction (qPCR) assays for robust detection and differentiation of LSDV field strains, LSDV vaccine strains, SPPV and GTPV were developed and extensively validated. In the following, two single assays were combined to duplex assays, one for the differentiation between LSDV field strains and LSDV vaccine strains, and the second for discrimination of SPPV and GTPV. Finally, a diagnostic workflow based on these new duplex assays in combination with already published methods was established. This workflow enables time-saving, robust and reliable detection, species-specific identification and genetic and phylogenetic characterization of all three capripox virus species. In addition, already existing serological examination methods (serum neutralization assay and commercial enzyme-linked immunosorbent assay) were compared regarding their sensitivity and specificity. Furthermore, pathogenesis studies with different capripox virus isolates were performed in the respective target species, and the suitability of selected virus isolates as challenge viruses for future vaccine studies was analyzed. Pathogenesis studies with isolates GTPV-“V/103” and LSDV-“Macedonia2016” revealed that both are proper candidates for challenge models. Finally, three different SPPV isolates (SPPV-“V/104”, SPPV-“India/2013/Surankote” and SPPV-“Egypt/2018”) were tested in sheep regarding their virulence to find a suitable challenge model for SPPV, and SPPV-“India/2013/Surankote” was chosen for future vaccine studies.
Once appropriate challenge models were established, different inactivated prototype vaccines against LSDV were developed, and vaccine safety as well as vaccine efficacy were tested in cattle. Eventually, a Polygen-adjuvanted inactivated LSDV-vaccine candidate was selected that is able to fully prevent cattle from any LSDV-related clinical signs after severe challenge infection. Furthermore, molecular and serological data indicate that this inactivated prototype vaccine is even able to induce a kind of “sterile immunity” against LSDV in those cattle. It has to be mentioned that a commercially available vaccine similar to this prototype vaccine would be a great advance for the control of LSDV.
In the future, additional studies addressing diagnostics and optimized control of capripox viruses should be performed. Firstly, probe-based real-time qPCR assays for the differentiation of SPPV and GTPV vaccine strains from their respective virulent field strains should be developed and included into the diagnostic workflow. Secondly, further tests of the inactivated prototype vaccine, e.g. determination of the minimum protective dose and the possibility of cross-protection in sheep and goats against SPPV and GTPV, respectively, should be performed.
Primary producers, alongside heterotrophic bacteria and viruses, modulate the essential global carbon cycle. About half of the Earth’s net primary production originates in the marine environment. By effecting these systems and the burial of carbon, bacteria play a significant role in the world’s climate, especially with regard to rising temperatures and increasing anthropogenic carbon dioxide production.
Particles present substrate-rich niches for particle-associated bacteria, but are rare in the marine system. Particle-associated bacteria, comprising of chemotactic motile free-living and particle-attached bacteria, were shown to have higher respiration rates, were larger in cell and genome size and showed a higher hydrolytic activity of extracellular enzymes compared to the free-living fraction.
Understanding the contribution of particle-associated bacteria to the degradation of algal biomass is essential to understand the marine carbon cycle. However, the identification of this group is difficult and required refinement.
Sequential filtration, the most commonly used technique for the separation of bacterial fractions, provides only access to a part of the particle-associated microbiome, and includes with large and clustered bacteria undesired false-positives. To overcome these limitations, separation by gravity in Imhoff sedimentation cones was explored in this thesis to access, identify and define particle-associated microbiomes, in comparison and conjunction with the established separation techniques like sequential filtration and centrifugation.
The cultivability on agar plates was assessed, aiming at the question which portion of the colony-forming bacteria belong to free-living non-motile or motile bacteria or to particle-attached bacteria. As continuous cultivation on plates often involves loss of cultures, colonies of the original plate were used to obtain partial 16S rRNA sequences of individual colonies and of plate microbiomes.
For future studies on particle-associated bacteria, a representative strain collection was established from particle-attached bacteria retained on 3 μm filters and from particle-associated bacteria collected together with settled algae in sedimentation cones.
To understand the contribution of top-down selection to a yearly recurring bacterioplankton bloom at our sampling site Helgoland, particle-associated strains were included in isolation experiments for flavophages, since Flavobacteriia are among the most important responder to the yearly observed blooms.
Overall, this thesis provides new insights into the isolation and cultivation of particle-associated bacteria – an important, but currently not fully understood fraction of organisms within the marine system.
The here presented dissertation investigated the molecular mechanisms, by which the food industry model bacteria Pseudomonas fluorescens and Listeria monocytogenes, grown either as planktonic cultures, were inhibited by plasma treated water (PTW) produced by a microwave-induced plasma source (MidiPLexc). As a starting point, optimal operating parameters were determined with 5 standard liters per minutes(slm)compressed air during the treatment of 10 ml deionized water within a treatment time of up to 15 min (pre-treatment time). Treatment times of 1, 3 and 5 min were selected (post-treatment time). In addition to physical parameters, i.e. temperature measurements at different spots at the plasma source during the production of the PTW, the chemical composition of PTW was determined by pH measurements, chronoamperometry (determination of the H2O2 concentration), ion chromatography (determination of the NO2-, NO3- and ONOO- concentrations) and mass spectrometry (qualitative determination of the molecules). In addition, concentration changes of reactive species over a period of 3 h indicated a decrease of the NO2- concentration as well as an increase of the NO3- and ONOO- concentration in the PTW. Microbiological assays, i.e. quantification of colony-forming units (CFU), fluorescence and XTT assays, revealed a significant reduction of the proliferation ability of the cells, membrane damages and metabolic activity have been demonstrated for planktonic cultures as well as mono- and multispecies biofilms. PTW effects on biofilm structures were investigated using microscopic methods such as fluorescence microscopy, confocal laser scanning microscopy (CLSM), atomic force microscopy (AFM), and scanning electron microscopy (SEM), as well as physical methods such as contact angle measurements. Significant changes in the biofilm structure have been shown, which indicate an ablation of the biofilm mass from top to bottom by approximately 2/3 of the biofilm mass and a destruction of the extracellular matrix (ECM) by the reactive species within the PTW. Subsequently, fresh-cut lettuce has been treated with PTW produced by up-scaled plasma sources. Apart from qualitative parameters of the lettuce after PTW treatment such as texture and color, the concentration of PTW reactive species have been determined. These experiments showed that the composition of the reactive species were slightly different from that of the laboratory-scaled plasma source MidiPLexc. Notably, the PTW treatment did not cause significant changes in texture and color of the fresh-cut lettuce. Finally, a synergistic effect of PTW treatment followed by plasma-processed air (PPA) drying was demonstrated application-specific.
Lyssaviruses, the causative agents of rabies, are a long-known threat for animals and humans. To date, terrestrial rabies still accounts for tens of thousands of human deaths annually, notwithstanding ambitious vaccination campaigns targeting susceptible dog and wildlife populations that act as reservoirs for the prototypic rabies virus. Moreover, the continuing discovery of newly emerging virus species in hitherto unconcerned chiropteran hosts and geographic regions drive the expansion of the Lyssavirus genus by unveiling its actual variety, host range and distribution.In this work, the genetic diversity of three distinct lyssaviruses, namely EBLV-1, KBLV and RABV, was elucidated by in-depth genomic analyses to provide further insight into lyssavirus evolution. The generation of full-genome sequences from primarily bat-associated Danish EBLV-1 samples significantly increased the number of available Danish EBLV-1 genome sequences while phylogenetic and phylogeographic analysis revealed a stronger phylogeographic structure for the cluster A1 of the sublineage EBLV-1a than it was postulated in previous studies. In addition, the acquisition of a nearly complete genome sequence for the Kotalahti bat lyssavirus provided the basis for the classification of this putative new lyssavirus species as a recognized member of the genus. Furthermore, phylogenetic analysis revealed the affiliation of KBLV to a group of Myotis-associated lyssaviruses giving a deeper insight into the shared evolutionary history of lyssaviruses co-evolving with particular bat species. Moreover, a deep-sequencing approach was utilized to assess the high genetic diversity of vaccine virus populations, uncovering three independent patterns of single nucleotide variants (SNVs) that became selected in ERA-related vaccine-induced cases. However, no apparent influence of the genetic diversity of vaccine viruses on microevolutionary processes like a potential reversion to virulence or a species-specific adaptation of the vaccine virus strains could be detected, leaving the question for the cause of rabies induction in the affected animals unanswered. Lastly, the successful implementation of a hybridization capturing system for the generation of full-genome sequences and deep-sequencing variant analyses of RABV and KBLV samples was demonstrated for a diagnostic bait set, highlighting the versatility and consistency of this approach to assess the genetic spectrum of known and novel lyssavirus species while setting the basis for its application and optimization in upcoming projects.In conclusion, as shown by the studies in this work, the investigation of lyssavirus genomes at the sub-consensus, full-genome and population level remains crucial to assess the complexity of lyssavirus evolution, as it provides an indispensable source of information to cover the diversity of the genus and understand evolutionary dynamics on a long-term and microevolutionary scale.
More than half of the infectious diseases in humans are caused by zoonotic pathogens or pathogens of animal origin that were transmitted to humans a long time ago. Two important rodent-associated zoonotic pathogens are hantaviruses and human-pathogenic Leptospira spp. Both pathogens induce lifelong infection in the rodent hosts that shed the pathogen. Infection with these zoonotic pathogens in humans can cause clinical symptoms. Since some rodents, like the common vole (Microtus arvalis) and the bank vole (Clethrionomys glareolus syn. Myodes glareolus), have cyclic mass reproduction, this can result in years of population outbreaks in an increased number of disease cases in humans. This was found to be the case with the leptospirosis outbreaks in Germany and tularemia outbreaks in Spain, which were traced back to increased common vole density, as well as with the hantavirus disease outbreaks in several European countries, which were associated with bank vole population outbreaks.
The aim of this work was to define the distribution and prevalence of different hantaviruses and leptospires as well as their coinfection in different European rodents, with a focus on voles from the genus Microtus and the identification of factors that affect the pathogen prevalence in rodent hosts. Therefore, common voles, bank voles, striped field mice (Apodemus agrarius) and other rodents were screened by molecular methods for the presence and prevalence of Leptospira spp. and different hantaviruses. Additionally, in selected studies, the presence of anti-hantavirus antibodies was screened by enzyme-linked immunosorbent assay (ELISA) using recombinant hantavirus-nucleocapsid proteins. The prevalence of hantavirus, Leptospira spp. and double-infections with both pathogens was analyzed using individual and population-based factors. Small mammals from four different European countries, Spain in the West, Germany and Austria in Central and Lithuania in Northeastern Europe, were included in the studies.
With the molecular screenings, two new hantavirus strains were detected in continental Europe and were named Traemmersee hantavirus (TRAV) and Rusne hantavirus (RUSV) after the trapping locations in Germany and Lithuania, respectively. TRAV was detected in a field vole (Microtus agrestis) from the federal state of Brandenburg, Germany, while RUSV was detected in root voles (Microtus oeconomus) from Lithuania. Phylogenetic analysis of both hantaviruses indicates their close relation to Tatenale hantavirus and Kielder hantavirus, which were discovered in field voles in Great Britain. A pairwise evolutionary distance (PED) analysis showed that all four hantaviruses belong to the same hantavirus species, for which the putative name “Tatenale orthohantavirus” was proposed. Additionally, a recombinant RUSV antigen was generated and used successfully in ELISA for the detection of RUSV-specific antibodies and for the analysis of the cross-reactivity of monoclonal and polyclonal antibodies.
In Germany, Tula orthohantavirus (TULV) was foremost detected in common voles in Thuringia and Brandenburg but was also detected in field voles in Brandenburg. Puumala orthohantavirus (PUUV) was detected in Thuringia at the virus distribution border, but sequences differed strongly from known sequences from another neighboring trapping location. While in Austria Dobrava-Belgrade orthohantavirus (DOBV), genotype Kurkino, was detected for the first time in striped field mice, no hantavirus RNA was detected in common voles from Spain. The cause of this absence in the Iberian common vole population might be its long-term isolation from the common vole populations more to the east. The TULV prevalence in Germany in this study was dependent on the season and on the prior growth of the reservoir population. An individual factor that affected the hantavirus prevalence, was the increasing age of the common vole.
Leptospira spp.-DNA was detected in common voles from Spain and Germany, as well as in one striped field mouse from Austria. Except for the two detections of L. borgpetersenii in Spain, which were probably the result of spillover infections, only the genomospecies L. kirschneri was detected in common voles from Spain and Germany. The high prevalence of Leptospira spp., as well as the detection of only one genomospecies, confirm that L. kirschneri is the genomospecies for which the common vole is the main reservoir. Important factors for the Leptospira spp. prevalence were found to be, in addition to temperature and rainfall, the season and the preceding common vole density. Like the case with hantavirus, the age of the vole was found to be an influencing factor.
In Germany, coinfections of TULV and Leptospira spp. were detected. These were associated with high common vole density and increased with the age of the common vole. Furthermore, the incidence of coinfections seems to be impacted more by the Leptospira spp. than by the hantavirus prevalence.
As part of this thesis, TULV and PUUV were detected in previously untested regions in Germany, DOBV was detected for the first time in Austria and the distribution range of the putative species “Tatenale orthohantavirus” was extended to continental Europe for the first time with detection in two countries. Screenings in Spain indicate that certain common vole populations can be free from TULV infection. Furthermore, leptospires were detected in rodents from Spain, Germany and Austria. It was verified that certain Leptospira genomospecies are host-specific. Factors that influence the prevalence of infection or coinfection by hantaviruses and leptospires were determined.
The origin and hosts associated with the Tatenale orthohantavirus should be clarified in further studies including the field vole and the root vole as well as other members of the genus Microtus in Europe and Asia. The development of a RUSV-antigen-based ELISA will enable future screening in humans and therefore might provide information about the human pathogenicity of this pathogen. For final confirmation of the zoonotic potential, isolation of the virus and development of a focus reduction neutralization test are necessary. The expansion of the striped field mouse to Austria and the detectable carryover of DOBV associated with this implies that further screening studies to more precisely characterize the distribution of DOBV (and other pathogens) are needed. The studies of DOBV spread in Austria as well as PUUV spread in Germany could help to better understand the emergence of zoonotic pathogens in new regions. The here described hantavirus-Leptospira spp. and Neoehrlichia mikurensis-Bartonella spp. coinfections should be further analyzed to characterize the interactions of the pathogens in the context of a microbiome and their influence on epidemiological aspects of the involved pathogens. The here identified individual and population-based impact factors for the TULV and Leptospira spp. prevalence should support the development and optimization of prediction models.
Bisherige Analysen von RABV-Pathogenitätsdeterminanten wurden mit laboradaptierten, teils attenuierten Viren durchgeführt. Es ist unklar, ob bisher untersuchte Faktoren auch für hoch virulente RABV-Feldviren relevant sind. Der hier durchgeführte systematische Vergleich von Feldviren und Laborstämmen im infizierten Tier konnte Unterschiede hinsichtlich der Fähigkeit immunkompetente Neuroglia des ZNS zu infizieren als mögliche Pathogenitätsdeterminante aufzeigen. Darüber hinaus wurden erstmals SZ-Neuroglia peripherer Nerven als Zielzellen für die RABV-Infektion identifiziert.
Für die Analyse von RABV-infizierten Geweben wurde ein modernes 3D Imaging-Verfahren angewandt. Gehirne aus experimentell infizierten Mäusen und Frettchen wurden wie in Veröffentlichung 1 beschrieben immunfluoreszenz-gefärbt, optisch geklärt und hochauflösend mit einem konfokalen Laserscan Mikroskop untersucht. RABV N und P Protein konnten dreidimensional in räumlicher Umgebung zu zellulären Strukturen des Wirtes visualisiert werden. Diese Untersuchung bewies die besondere Eignung des Verfahrens zur Identifizierung vereinzelter Zielstrukturen und wurde für nachfolgende systematische Analysen im ZNS und PNS verwendet.
Der RABV-Zelltropismus wurde als vermutlich wichtige Pathogenitätsdeterminante in Veröffentlichung 2 untersucht. RABV Feldviren vom Hund (rRABV Dog), Fuchs (rRABV Fox) und Waschbär (rRABV Rac) konnten im Vergleich zu den laboradaptierten Viren (rCVS-11, SAD L16 und ERA) nicht-neuronale Zellen im ZNS wie Astroglia produktiv infizieren. Der Anteil infizierter Astrozyten ist mit 7-17 % nach i.m. Inokulation vergleichbar mit dem der Neuronen (7-19 %). Interessanterweise wurde eine Inokulationsroutenabhängige Infektion von Astrozyten mit dem moderat virulenten Laborstamm rCVS-11 beobachtet. Diese systematische und quantitative Analyse des RABV-Astrozyten- und Neuronentropismus zeigt, dass mit abnehmender Virulenz die Fähigkeit der Viren produktiv in Astroglia im ZNS zu replizieren abnimmt. Die Fähigkeit eine produktive Infektion in Astrozyten auszubilden, scheint demnach ein grundlegender Unterschied zwischen Feldviren und weniger virulenten Laborstämmen zu sein.
Weiterführend wurde in Veröffentlichung 3 die Virusausbreitung vom ZNS in periphere Nerven untersucht. Hinterbeine, Wirbelsäule inklusive Rückenmark, Gehirn und weitere Kopfbereiche experimentell infizierter Mäuse wurden mittels Lichtblatt- und konfokaler Laserscanmikroskopie analysiert. Zum Ersten Mal konnte eine RABV-Infektion peripherer Neuroglia dargestellt werden. Eine produktive Infektion immunkompetenter SZ im PNS ist also möglicherweise, genauso wie die Infektion von Astrozyten im ZNS, entscheidend für die RABV-Neuropathogenese. Die Detektion von RABV-Antigen im Hinterbein nach i.c. Inokulation beweist eine anterograde axonale Virusausbreitung vom ZNS in periphere Nerven. Interessanterweise konnte das Virus auch in Bereichen des Nasopharynx und des Zungenepithels nachgewiesen werden, worüber möglicherweise zusätzlich zur Speicheldrüse Virus in den Nasenrachenraum ausgeschieden wird. Zusammenfassend konnten mit dieser Arbeit neue Einblicke hinsichtlich des Zelltropismus und der Ausbreitung von RABV in vivo im Modellorganismus Maus gewonnen werden. Die Fähigkeit der untersuchten hoch virulenten Feldviren nicht-neuronale, immunkompetente Neuroglia des ZNS und PNS zu infizieren unterscheidet diese von den weniger virulenten bzw. apathogenen Virusstämmen und könnte ein entscheidender Faktor bei der Ausbildung einer Tollwut-Enzephalitis darstellen.
Infections with bacterial pathogens are a major cause of morbidity and mortality
worldwide. Furthermore, the extensive use of antibiotics increased the frequency of infections with drug-resistant pathogens. Streptococcus pneumoniae, a major cause of
bacterial pneumonia, is among the pathogens that often show resistances. As an
additional side effect, the use of antibiotics can disrupt the patient’s intestinal microbiome, allowing Clostridioides difficile to cause severe, recurring and hard-to-treat
colitis. Hence, new antimicrobials are needed to combat infections caused by these
pathogens. A promising approach is the usage of antimicrobial peptides (AMPs), defense
molecules produced by organisms from all domains of life. AMPs can specifically perforate
bacterial membranes and stimulate the overall immune response of the host.
In this work, the proteomic adaptations of S. pneumoniae to the human antimicrobial
peptides LL-37 and hBD3 were assessed by high-resolution mass spectrometry and
compared to general membrane stress, in order to evaluate the specificity of the bacterial
reactions. Furthermore, C. difficile was challenged with the Lactococcus lactis-derived
AMP nisin, and the proteomic alterations were examined. In essence, application of LL-37
and hBD3 changed the abundance of pneumococcal proteins involved in membrane
transport, including a putative AMP transporter, a protease, virulence proteins and
genetic regulators. Moreover, a challenge with LL-37 caused an increase of proteins
involved in cell surface modifications that alter the bacterial membrane charge and repel cationic molecules such as LL-37. In support of this, mutants unable to express these
proteins were more sensitive to LL-37. In contrast, general membrane stress, induced by
the application of cationic detergents, produced a diverse proteomic adjustment, though the same two-component regulatory system was activated. In C. difficile, levels of flagella proteins were significantly increased shortly after treatment with nisin, being in
accordance with subsequent electron microscopy data and pointing at a role of these
proteins in adaptation to nisin. Interestingly, a flagella-overexpressing mutant showed an
enhanced resistance towards nisin, independent of bacterial motility.
Taken together, the bacterial pathogens under investigation seem to possess
mechanisms to reduce the effect of AMPs on their physiology, a finding that should be
considered developing drugs based on AMPs. Although AMPs exhibit membrane
perturbations as a common mechanism of action, bacterial adaptation to AMPs appear
multifactorial and dependent on the exact pathogen observed and AMP used.
Prothrombotic and Proinflammatory Activities of the β-Hemolytic Group B Streptococcal Pigment
(2019)
A prominent feature of severe streptococcal infections is the profound inflammatory response that contributes to systemic toxicity. In sepsis the dysregulated host response involves both immunological and nonimmunological pathways. Here, we report a fatal case of an immunocompetent healthy female presenting with toxic shock and purpura fulminans caused by group B streptococcus (GBS; serotype III, CC19). The strain (LUMC16) was pigmented and hyperhemolytic. Stimulation of human primary cells with hyperhemolytic LUMC16 and STSS/NF-HH strains and pigment toxin resulted in a release of proinflammatory mediators, including tumor necrosis factor, interleukin (IL)-1β, and IL-6. In addition, LUMC16 induced blood clotting and showed factor XII activity on its surface, which was linked to the presence of the pigment. The expression of pigment was not linked to a mutation within the CovR/S region. In conclusion, our study shows that the hemolytic lipid toxin contributes to the ability of GBS to cause systemic hyperinflammation and interferes with the coagulation system.
Technological advances in light microscopy have always gone hand in hand with unprecedented biological insight. For microbiology, light microscopy even played a founding role in the conception of the entire discipline. The ability to observe pathogens that would otherwise evade human observation makes it a critical necessity and an indispensable tool to infectious disease research. Thus, the aim of this thesis was to optimize, extend, and functionally apply advanced light microscopy techniques to elucidate spatio-temporal and spatio-morphological components of bacterial and viral infection in vitro and in vivo.
Pathogens are in a constant arms race with the host’s immune system. By finding ways to circumvent host-mediated immune responses, they try to evade elimination and facilitate their own propagation. The first study (publication I) demonstrated that the obligate intracellular pathogen Coxiella burnetii is not just able to infect natural killer (NK) cells, but is actually capable of surviving the harsh degradative conditions in the cytotoxic lymphocyte’s granules. Using live-cell imaging of reporter-expressing Coxiella burnetii, the transient NK cell passage was closely monitored to provide detailed spatio-temporal information on this dynamic process in support of a range of static analyses. Bacterial release from NK cells was pinpointed to a time frame between 24 to 48 hours post-infection and the duration of release to about 15 minutes.
The second approach (publications II-V) aimed at shedding light on the greater spatio-morphological context of virus infection. Thus far, most studies investigating the distribution or tropism of viruses in vivo have used conventional immunohistochemistry in thin sections. Omitting the native spatial context of the infection site in vivo inherently bears the risk of incomplete description. While the microscopic tools and sample preparation protocols needed for volumetric 3D immunofluorescence imaging have recently been made available, they had not gained a foothold in virus research yet. An integral part of this thesis was concerned with the assessment and optimization of available tissue optical clearing protocols to develop an immunofluorescence-compatible 3D imaging pipeline for the investigation of virus infection inside its intact spatio-morphological environment (publication II). This formed the basis for all subsequent volumetric analyses of virus infection in vivo presented here. Consequently, this thesis provided a valuable proof of concept and blueprints for future virus research on the mesoscopic scale of host-pathogen interactions in vivo (publications II-V), using rabies virus (RABV; publications II-IV) and the newly-emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; publication V) as infection models for the nervous system and the respiratory tract, respectively.
Applying and further improving this volumetric 3D imaging workflow enabled unprecedented insights into the comprehensive in vivo cell tropism of RABV in the central (CNS) (publication III) and peripheral nervous system (PNS) (publication IV). Accordingly, differential infection of CNS-resident astrocytes by pathogenic and lab-attenuated RABV was demonstrated (publication III). While either virus variant showed equal capacity to infect neurons, as demonstrated by quantitative image analysis, only pathogenic field RABVs were able to establish non-abortive infection of astrocytes via the natural intramuscular inoculation route. A combined 3D LSFM-CLSM workflow further identified peripheral Schwann cells as a relevant target cell population of pathogenic RABV in the PNS (publication IV). This suggested that non-abortive infection of central and peripheral neuroglia by pathogenic RABV impairs their immunomodulatory function and thus represents a key step in RABV pathogenesis, which may contribute significantly to the establishment of lethal rabies disease.
Finally, utilizing the full volumetric acquisition power of LSFM, a further refined version of the established 3D imaging pipeline facilitated a detailed mesoscopic investigation of the distribution of SARS-CoV-2 in the respiratory tract of the ferret animal model (publication V). Particularly for this newly-emerged pathogen of global concern, in-depth knowledge of host-pathogen interactions is critical. By preserving the complete spatio-morphological context of virus infection in the ferret respiratory tract, this thesis provided the first specific 3D reconstruction of SARS-CoV-2 infection and the first report of 3D visualization of respiratory virus infection in nasal turbinates altogether. 3D object segmentation of SARS-CoV-2 infection in large tissue volumes identified and emphasized a distinct oligofocal infection pattern in the upper respiratory tract (URT) of ferrets. Furthermore, it corroborated a preferential replication of SARS-CoV-2 in the ferret URT, as only debris-associated virus antigen was detected in the lower respiratory tract of ferrets, thus providing crucial information on the spatial distribution of SARS-CoV-2.
Ebolaviruses are dependent on host cell proteins for almost all steps in their viral life cycle. While some cellular factors with crucial roles in the ebolavirus life cycle have been identified, many of them remain to be identified or fully characterised. This thesis focuses on the characterisation and identification of host cell interactions of the highly pathogenic Ebola virus (EBOV), probing host-virus interaction at various stages of the viral life cycle. Beginning with viral budding, the function of a recently proposed late domain motif within the EBOV matrix protein VP40 was examined using an EBOV transcription and replication-competent virus-like particle (trVLP) system. Although this motif has been suggested to interact with the endosomal sorting complex required for transport (ESCRT), we could show that this late domain motif does not contribute to EBOV budding.
While many host cell proteins have been identified so far that are important for viral budding, only a few proteins are known that are necessary for EBOV RNA synthesis. Thus, to identify host proteins that are involved in viral replication and transcription, we performed a genome-wide siRNA screen in the context of an EBOV minigenome assay. Using this approach, we identified several proteins that appear to be important for viral RNA synthesis or protein expression. Two of the most prominent hits in our screen were CAD (Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase and dihydroorotase) and NXF1 (nuclear RNA export factor 1). CAD catalyses the first three steps in the de novo pyrimidine biosynthesis, while NXF1 is the main nuclear export protein for cellular mRNAs. In subsequent characterisation studies, using a range of life cycle modelling systems as well as molecular analyses, we could demonstrate that the canonical function of CAD during the pyrimidine biosynthesis is necessary for EBOV replication and transcription. In contrast to this, for NXF1 we discovered a so-far unknown function: Again, by applying different life cycle modelling alongside with molecular assays, we provided evidence that the EBOV nucleoprotein recruits NXF1 into inclusion bodies, the site of EBOV RNA synthesis, where it binds viral mRNAs to export them from these structures. Importantly, for both CAD and NXF1 we were able to recapitulate key data in the context of live EBOV infection, confirming their roles in the viral life cycle.
Both of these identified host factors are promising targets for antiviral therapies and indeed de novo pyrimidine synthesis is emerging as a possible antiviral target for a number of viruses. Similarly, as we could show NXF1 to be important in the life cycle of the highly pathogenic Junín virus, this raises the possibility that disruption of this interaction may result in broad-spectrum antiviral activity. Moreover, for an increasing number of negative-sense RNA viruses inclusion bodies as site of viral RNA synthesis are described to have a liquid organelle character. Therefore, our findings on NXF1 also provide an intriguing model to explain how negative-sense RNA viruses in general overcome this obstacle and export viral mRNAs from inclusion bodies.
The anaerobic pathogen Clostridioides difficile is perfectly equipped to survive and persist inside the mammalian intestine. When facing unfavorable conditions C. difficile is able to form highly resistant endospores. Likewise, biofilms are currently discussed as form of persistence. Here a comprehensive proteomics approach was applied to investigate the molecular processes of C. difficile strain 630Δerm underlying biofilm formation. The comparison of the proteome from two different forms of biofilm-like growth, namely aggregate biofilms and colonies on agar plates, revealed major differences in the formation of cell surface proteins, as well as enzymes of its energy and stress metabolism. For instance, while the obtained data suggest that aggregate biofilm cells express both flagella, type IV pili and enzymes required for biosynthesis of cell-surface polysaccharides, the S-layer protein SlpA and most cell wall proteins (CWPs) encoded adjacent to SlpA were detected in significantly lower amounts in aggregate biofilm cells than in colony biofilms. Moreover, the obtained data suggested that aggregate biofilm cells are rather actively growing cells while colony biofilm cells most likely severely suffer from a lack of reductive equivalents what requires induction of the Wood-Ljungdahl pathway and C. difficile’s V-type ATPase to maintain cell homeostasis. In agreement with this, aggregate biofilm cells, in contrast to colony biofilm cells, neither induced toxin nor spore production. Finally, the data revealed that the sigma factor SigL/RpoN and its dependent regulators are noticeably induced in aggregate biofilms suggesting an important role of SigL/RpoN in aggregate biofilm formation.
Orthohantaviruses are rodent-borne pathogens distributed all over the world, which do not cause visible disease in their reservoir host. Puumala orthohantavirus (PUUV) causes most human hantavirus disease cases in Europe and is transmitted by the bank vole (Clethrionomys glareolus). Hantaviruses have a tri-segmented genome consisting of the large (L) segment, coding for the RNA-dependent RNA polymerase (RdRP), the medium (M) segment, encoding the glycoproteins, and the small (S) segment. The S-segment contains two major overlapping open reading frames (ORF) coding for the nucleocapsid (N) protein and a non-structural (NSs) protein, a putative type I interferon (IFN-I) antagonist. To date, pathogenesis and reservoir host adaptation of hantaviruses are poorly understood due to missing adequate cell culture and animal models.
In contrast to previous studies, in this work, data from spring and summer 2019 indicated a high vole abundance, a high PUUV prevalence in voles and high human incidence for some endemic regions in Germany, but elsewhere values were low to moderate. Regional and local human health institutions need to be aware about the heterogeneous distribution of human PUUV infection risk.
For a better understanding of virus-host associations, two novel cell lines from bank voles and common voles each were generated and their susceptibility and replication capacities for a variety of zoonotic and non-zoonotic viruses were analyzed. The PUUV strain Vranica/Hällnäs showed efficient replication in a new bank vole kidney cell line, but not in four other cell lines of bank and common voles. Vice versa, Tula orthohantavirus (TULV) replicated in the kidney cell line of common voles, but was hampered in its replication in other cell lines. Several viruses, such as Cowpox virus, Vaccinia virus, Rift Valley fever virus, and Encephalomyocarditis virus 1 replicated in all four cell lines. West Nile virus, Usutu virus, Sindbis virus and Tick-borne encephalitis virus replicated only in a part of the cell lines. These results indicate a tissue or species specific tropism for many of the tested viruses and the potential value of vole cell lines to address such questions in detail.
Using one of these new cell lines, the first German PUUV strains were isolated from bank voles caught in the highly endemic region around Osnabrück. Complete genomes were determined by target-enrichment-mediated high-throughput sequencing from original lung tissue, after isolation and after additional passaging in VeroE6 cells and a bank vole-derived kidney cell line. Different single amino acid substitutions were observed in the RdRP of the two stable PUUV isolates. The PUUV strain isolated on VeroE6 cells showed a lower titer when propagated on bank vole cells compared to VeroE6 cells. Additionally, glycoprotein precursor (GPC)-derived virus-like particles of a German PUUV strain from the same region allowed the generation of monoclonal antibodies that reacted with the isolated PUUV strains.
To investigate the role of PUUV and other vole-borne hantavirus NSs proteins, the evolution of the NSs and N encoding sequences was investigated by a field study in bank voles and the NSs sequences were characterized in vitro for their inhibitory effect on the human interferon-β promoter. Analysis of blood and lung samples of 851 bank voles trapped during 2010-2014 in Baden-Wuerttemberg and North Rhine-Westphalia resulted in detection of 27.8% PUUV-specific antibody positive bank voles, whereas in 22.3% PUUV-specific RNA was detected. In the hantavirus outbreak years 2010 and 2012 PUUV prevalence in bank voles was higher compared to 2011, 2013 and 2014. Sequences of the S segment of all positive bank voles showed amino acid and nucleotide sequence types of the NSs-ORF with temporal and/or local variation, whereas the N-ORF was highly conserved. One sequence type persisted over the whole observation period in both regions. The NSs coding sequence was highly divergent among regional bank vole populations in the outbreak year 2012.
Transfection experiments resulted in the detection of different products of the NSs-ORF of PUUV, TULV, Prospect Hill and Khabarovsk orthohantaviruses, due to translation initiation at different methionine codons along the coding sequence. Using luciferase reporter assays, the NSs proteins of PUUV, TULV, Prospect Hill and Khabarovsk orthohantaviruses showed inhibition of IFN-I induction of up to 70%, whereas Sin Nombre and Andes orthohantavirus NSs proteins showed a reduced effect compared to the other NSs proteins. The first 20 amino acids of the N-terminal region of PUUV NSs were found to be crucial for IFN-I promoter inhibition.
In conclusion, the newly established cell lines, antibodies, reporter assays and PUUV isolates are highly valuable tools for future hantavirus research. The activity of PUUV NSs protein in human cells contributes to our understanding of virus-host interactions and highlights the importance of corresponding future reservoir host studies. Hantavirus surveillance studies showed the necessity for timely information of the potential human PUUV infection risk to public health institutions in endemic areas to initiate appropriate actions.
Der Erreger des Q-Fiebers ist C. burnetii, ein zoonotisches intrazelluläres Bakterium. Die Gram-negativen Coxiellen kommen in zwei verschiedenen antigenen Lipopolysaccharid (LPS)-Formen vor: als virulente Ph I-LPS- und/oder avirulente Ph II-LPS-Bakterien. C. burnetii wird durch Kontakt mit infizierten Tieren sowie infektiösen Stäuben übertragen. Akute fiebrige Infektionen können beim Menschen im weiteren Verlauf eine Pneumonie oder Hepatitis auslösen. Zu einem geringen Prozentsatz entstehen chronische Infektionen mit persistierenden Coxiellen. Eine C. burnetii-Infektion bewirkt sowohl eine humorale als auch zelluläre Immunantwort. Neben Monozyten und Makrophagen dienen auch dendritische Zellen (DCs) den Coxiellen als geeignete Wirtszellen. DCs gehören zu den Immunzellen der first-line-of-defense des angeborenen Immunsystems und treten während einer Coxiellen-Infektion ebenso wie die mit ihnen kooperierenden natürlichen Killerzellen (NK-Zellen) früh mit dem aufgenommenen bakteriellen Pathogen in Kontakt. Durch Antigenpräsentation infizierter DCs wird die für die anti-Coxiellen Abwehr maßgebliche T-Zell-Immunität initialisiert und die nachgeschaltete Immunantwort funktional ausgerichtet.
Trotz dieser zentralen Immunfunktion sind die zellulären Vorgänge von DCs während einer C. burnetii-Infektion, insbesondere mit Blick auf die zelluläre Selbstverteidigung gegenüber den vermutlich initial auftretenden Ph II-LPS-Varianten, nicht ausreichend verstanden. Zudem ist bisher nicht hinreichend geklärt, welchen Einfluss FN-γ, das von aktivierten NK-Zellen produziert wird, sowie die Sauerstoffumgebung auf die zelluläre Abwehr infizierter APCs nimmt.
Das Forschungsziel dieser Promotionsarbeit war es daher, einen detaillierten Einblick in die Prozesse der Coxiellen-Infektionen von DCs und NK-Zellen zu erhalten und hierbei insbesondere die IFN-γ-Wirkung auf die DC-Pathogen-Wechselwirkung sowohl unter norm- als auch hypoxischen Bedingungen zu untersuchen.
Die im ersten Teil der Promotionsarbeit durchgeführten zellbiologischen, immunologischen und proteinbiochemischen Analysen im murinen Zellsystem belegen eine pathogenausgelöste Subversion der funktionalen Aktivierung/Induktion der MHC I-Antigenpräsentation Coxiellen-infizierter DCs. Die infektionsbedingte Beeinträchtigung der MHC-Antigenpräsentation infizierter DCs lässt sich in direkter Weise auf einen autokrinen Suppressionseffekt des αVβ8-Integrin-aktivierten TGF-β und nicht auf die subversive Wirkung von Coxiellen-LPS als Virulenzfaktor zurückführen. Untersuchungen im Zusammenhang mit IFN-γ zeigen, dass dieses Zytokin in infizierten DCs eine Wiederherstellung der MHC I-Induktion und -Oberflächenexpression bewirkt, welche mit einer funktionalen Prozessierung und MHC-Präsentation pathogener Peptidantigene verbunden ist. Weitere Studien belegen zudem, dass IFN-γ-behandelte DCs in der Lage sind, die Etablierung/Vermehrung intrazellulärer Coxiellen negativ zu beeinflussen. Die durchgeführten siRNA- und CRISPR/Cas9-Experimente zeigen, dass die zelluläre Selbstverteidigung infizierter DCs maßgeblich durch das IFN-γ-induzierbare iNOS/NO-System vermittelt wird. Als reaktives Stickstoffradikal scheint Stickstoffmonoxid (NO) sowohl Komponenten der bakteriellen Elektronentransportkette als auch die autophagische Ausbildung und Integrität parasitophorer Vakuolen zu beeinträchtigen. Parallel hierzu schützen sich infizierte DCs über einen metabolischen Wechsel zur aeroben Glykolyse vor mitotoxischer NO-Wirkung und sichern so während der intrazellulären Coxiellen-Eliminierung ihr eigenes Überleben.
Weitere Untersuchungen dieser Arbeit belegen zudem, dass auch C. burnetii zu einer entsprechenden Gegenwehr fähig ist. Um der NO-vermittelten Abwehr infizierter DCs entgegenzuwirken, induzieren Coxiellen zur Minderung antibakterieller Radikal-Effekte ihre Cytochrom bd-, Katalase- und SOD-Expression. Infektionsstudien mit T4SS-defekten Coxiellen weisen ferner darauf hin, dass das bakterielle Sekretionssystem vermutlich eine wichtige Rolle bei der Wirksamkeit der NO-vermittelten Abwehr infizierter DCs spielt, da sich Coxiellen ohne intaktes T4SS offensichtlich dem negativen NO-Einfluss entziehen und/oder keine entsprechenden Angriffsziele für NO bieten. Studien C. burnetii-infizierter Makrophagen bestätigen, dass das iNOS/NO-System eine essenzielle antibakterielle Selbstverteidigung von APCs darstellt. So zeigen auch Makrophagen eine deutliche Beeinträchtigung intrazellulärer Coxiellen-Vermehrung unter iNOS-vermittelter NO-Synthese. Die im weiteren Verlauf der Arbeit untersuchten norm- und hypoxischen Infektionsmodelle infizierter DCs lassen vermuten, dass hypoxische Kulturbedingungen die Coxiellen dazu veranlassen, ein sporenähnliches Stadium ohne produktive Vakuolenbildung auszubilden. Diese hypoxische Überlebensform intrazellulärer Coxiellen zeichnet sich durch IFN-γ-Resistenz, eine durch modifizierte Genexpression optimierte Sauerstoffverwertung und Radikalentgiftung sowie die Erhaltung ihrer Infektiosität aus. Dies deutet darauf hin, dass Hypoxie den intrazellulären Coxiellen weitere Möglichkeiten zur effizienten Immunevasion eröffnet, die einen unentdeckten Bakterienverbleib innerhalb infizierter Wirtszellen begünstigt und so vermutlich chronische C. burnetii-Infektionen fördert.
Für die Synthese und Freisetzung des APC-stimulierenden IFN-γ sind im Zuge angeborener Immunität vor allem die mit DCs kooperierenden NK-Zellen verantwortlich. Die im zweiten Teil dieser Promotionsarbeit durchgeführten Studien zur Charakterisierung der Interaktion zwischen NK-Zellen und Coxiellen belegen, dass NK-Zellen von C. burnetii infiziert werden, sie jedoch die Etablierung und Replikation internalisierter Bakterien durch Ausschleusung in die extrazelluläre Umgebung unterbinden. Dieser Prozess geht mit einer funktionalen NK-Zell-Aktivierung einher, welche durch Phospho-Aktivierung der PKC ϴ sowie IFN-γ- und Granzym B-Ausschüttung charakterisiert ist. Verschiedene mikroskopische Analysen zeigen zudem, dass die intrazellulären bakteriellen Strukturen in unmittelbarem Kontakt mit den sekretorischen Granula stehen und die Coxiellen-Freisetzung über Degranulierung infizierter NK-Zellen erfolgt. Der Abtötung innerhalb der sekretorischen Granula infizierter NK-Zellen scheint sich C. burnetii durch seine Säure- und Protease-Resistenz zu entziehen. Freigesetzte Coxiellen erhalten nach Degranulierung größtenteils ihre Integrität und Fähigkeit zur Infektion benachbarter Wirtszellen. Obschon Coxiellen der Eliminierung durch die sekretorischen Granula entgehen und dies eine kritische Achillesferse der angeborenen Immunantwort darstellt, verbleibt über das gleichzeitig ausgeschüttete IFN-γ infizierter NK-Zellen ein positiver Effekt auf die antibakterielle APC-Aktivität.
In ihrer Gesamtbetrachtung tragen die erzielten Ergebnisse dieser Promotionsarbeit zu einem besseren und tieferen Verständnis der C. burnetii-Infektion von DCs und NK-Zellen bei und geben neue Einsichten in die zelluläre Selbstverteidigung sowie die IFN-γ-basierte Immunkooperation innerhalb der frühen Phase der anti-Coxiellen Abwehr. Im weiteren Infektionsverlauf können jedoch diese immunologischen Prozesse durch auftretende Hypoxie vermutlich eingeschränkt und die Eliminierung intrazellulärer Coxiellen erschwert sein.
Phospholipide wie Phosphatidylinositol und Phosphatidylcholin sind essenzielle Bestandteile aller biologischen Membranen und für deren Integrität und Funktion unerlässlich. Sind Inositol und Cholin (IC) im Medium vorhanden, ist die Hefe Saccharomyces cerevisiae in der Lage, diese aufzunehmen und zu verarbeiten. Unter Mangelbedingungen können diese Stoffe von der Zelle selbst synthetisiert werden. Daher ist es sinnvoll, die Phospholipid¬biosynthese-Gene differenziell zu exprimieren, was auf der Ebene der Transkriptions¬initiation geschieht. Bei IC-Mangel werden die Gene (z. B. das Inositol-3-Phosphat Synthase Gen INO1) durch Bindung des heterodimeren Aktivatorkomplexes Ino2/Ino4 an das Promotorelement ICRE („inositol/ choline responsive element“) aktiviert, um die Biosynthese zu gewährleisten. Sowohl Ino2 als auch Ino4 sind für die ICRE-Bindung nötig, während die transkriptionale Aktivierung nur durch Ino2 mit Hilfe zweier Transkriptionsaktivierungsdomänen TAD1 und TAD2 vermittelt wird. Ist dagegen ausreichend IC vorhanden, werden die Gene reprimiert, indem der Repressor Opi1 an den Aktivator Ino2 bindet, sodass es zu einer Konformationsänderung kommt und eine Dimerisierung mit Ino4 nicht mehr möglich ist.
Um eine erfolgreiche Transkriptionsinitiation zu gewährleisten, bilden neben der RNA-Polymerase II eine Reihe genereller Transkriptionsfaktoren (A, B, D, E, F und H) sowie der Mediatorkomplex im Promotorbereich der Zielgene den sog. Präinitiationskomplex (PIC). Die von diesen basalen Faktoren gewährleistete geringe Grundexpression kann von Aktivatorproteinen, die an positiv-regulatorische Elemente („upstream activation site“, UAS) binden, deutlich verstärkt werden. Hierzu nutzen Aktivatorproteine verschiedene Mechanismen, zu denen die Auflockerung der Chromatinstruktur durch Histonmodifikationskomplexe wie SAGA oder Chromatinremodellierungskomplexe wie SWI/SNF, die bessere Bindung der Transkriptionsfaktoren am Basalpromotorbereich oder die Beschleunigung des Übergangs vom geschlossenen zum offenen PIC gehören.
Im Verlauf dieser Arbeit konnten zahlreiche Interaktionen zwischen dem Aktivator Ino2 und Faktoren der Transkriptionsmaschinerie nachgewiesen werden, die vermutlich die Häufigkeit der Trans¬kriptions-initiation beeinflussen. Einige der Untereinheiten des Transkriptionsfaktors TFIID interagie¬ren mit Ino2. Ein Schwerpunkt dieser Arbeit lag auf der Charakterisierung der Interaktion der Ino2-TAD1 mit Taf1 und Taf12. Der Austausch der Aminosäuren Asparaginsäure-20 und Phenyl¬alanin-21 in Ino2 führte zu einem Interaktionsausfall mit beiden Tafs. In Taf1 konnten zwei basisch-hydro¬phobe Aminosäure-Bereiche (K206 Y207 und L208 L209 K210) innerhalb der minimalen Aktivator¬binde¬domäne 2 (ABD2) identifiziert werden, die kritisch für den Kontakt zum Aktivator sind. Es konnte ferner gezeigt werden, dass basische und hydrophobe Aminosäuren in Kombination für die Bindung an den Aktivator verantwortlich sind und dass der Austausch gegen Alanin (KY-AA) zu einem Abfall der Expression des INO1-Gens auf 44% führt. Darüber hinaus konnte der Bromo¬domänen¬faktor Bdf1 als Interaktionspartner von Ino2 identifiziert werden. Bdf1 vervollständigt Hefe-Taf1, während Säuger-Taf1 selbst Bromodomänen zur Erkennung von Histonacetylierungen beinhaltet. Innerhalb der Taf12-Minimaldomäne sind die Aminosäuren K150 L151 R175 und L176 wesentlich für die Bindung an Ino2. Eine Teildeletion von Taf12, die unter anderem den Verlust dieser Aminosäuren zur Folge hat, führt zu einer auf 76% reduzierten INO1-Expression.
Ein weiterer Transkriptions¬faktor, der von Ino2 kontaktiert wird, ist TFIIA mit seinen Untereinheiten Toa1 und Toa2. Die Proteine kontaktieren beide TADs des Aktivators, allerdings konnten innerhalb der minimalen Interaktionsdomänen der Toa-Proteine keine für diese Interaktion verantwortliche Aminosäuren identifiziert werden. Veränderungen der Toa1-Sequenz hatten keinen phänotypischen Einfluss auf die Phospholipidbiosynthese, allerdings führten einige Veränderungen (RKRK-Motiv im AS-Bereich 253-259) zu letalen Folgen für das Wachstum der Zellen, weil die Bildung des TFIIA-TBP-TATA-Komplexes beeinträchtigt ist. Wahrscheinlich hat die Interaktion zwischen Ino2 und TFIIA eine verstärkende Wirkung auf die Transkriptionsinitiation der Phospholipidbiosynthese-Gene, indem die Interaktion zwischen TFIIA und TFIID stabilisiert wird und TFIIA die interaktive Oberfläche am Promotor für Interaktionen mit anderen Proteinen vergrößert.
Die Verschiebung der Nucleosomen in Promotorbereichen durch Chromatinremodellierungs¬kompexe wie SWI/SNF ist ein weiterer Mechanismus der Transkriptionsaktivierung. In früheren Arbeiten wurde bereits die Interaktion zwischen Ino2, Aro80 bzw. Gal4 und der SWI/SNF ATPase-Untereinheit Swi2 beschrieben. Im Zuge dieser Arbeit konnte eine minimale Interaktionsdomäne im AS-Bereich 238-307 kartiert werden. Essenzielle Aminosäuren für die Bindung an Ino2 und andere Aktivatoren konnten nicht identifiziert werden.
Sug1 und Sug2 sind ATPasen der regulatorischen 19S-Untereinheit des 26S Proteasoms. Neben der Degradation fehlgefalteter polyubiquitinierter Proteine haben sie auch eine nicht-proteolytische Bedeutung für die Transkriptionsinitiation. Bekannt ist, dass proteasomale ATPasen an aktiven Promotoren zu finden sind und mit Aktivator¬proteinen (z. B. Gal4) interagieren können. Die vorlie¬gende Arbeit zeigt, dass auch Ino2 von Sug1 und Sug2 kontaktiert wird. Möglicherweise dienen sie am INO1-Promotor als Stabilisatoren und Vermittler zwischen Ino2 und der Transkriptionsmaschi¬nerie und erleichtern den Übergang des Präinitiationskomplexes in den Elongationskomplex.
Unter reprimierenden Bedingungen bindet Opi1 an Ino2 und rekrutiert die Corepressorkomplexe Sin3 und Cyc8/Tup1, die ihrerseits Histondeacetylasen in Promotornähe bringen und die Transkrip¬tion durch lokale Chromatinverfestigung reprimieren. Frühere Arbeiten hatten gezeigt, dass die Corepressoren auch mit Ino2 und weiteren Aktivatoren (Hac1 und Pho4) interagieren und dass sie in Abhängigkeit von Ino2, nicht aber von Opi1, am INO1-Promotor vorliegen. In dieser Arbeit wurde die Interaktion zwischen Ino2 und Sin3 bzw. Cyc8 charakterisiert. Sin3 und Cyc8 kontaktieren einen Bereich des Aktivators, der die TAD2 und die RID (Repressorinteraktionsdomäne) enthält. Es war bekannt, dass die Aminosäuren Phenylalanin-130, Leucin-131 und Asparaginsäure-132 essenziell für die Interaktion mit Opi1 sind. In dieser Arbeit wurde gezeigt, dass deren Austausch gegen Alanin auch einen Interaktionsverlust mit Cyc8 und Sin3 bewirkt. Darüber hinaus konnte gezeigt werden, dass diese FLD-AAA-Mutation zu einer praktisch konstitutiven Expression des INO1-Gens führt, allerdings auf niedrigerem Niveau als im Fall dereprimierter Zellen mit einem Wildtyp Ino2. In Hac1 und Pho4 konnten Aminosäuren mit vergleichbarer Bedeutung für die Corepressorbindung nicht identifiziert werden. Offenbar können die Corepressoren je nach physiologischer Situation in der Zelle positiv oder negativ auf die Transkriptionsinitiation wirken.
Streptococcus pneumoniae is a commensal of the human upper respiratory tract and moreover, the
causative agent of several life-threatening diseases including pneumonia, sepsis, otitis media, and
meningitis. Due to the worldwide rise of resistance to antibiotics in pneumococci the understanding
of its physiology is of increasing importance. In this context, the analysis of the pneumococcal
proteome is helpful as comprehensive data on protein abundances in S. pneumoniae may provide
an extensive source of information to facilitate the development of new vaccines and drug
treatments.
It is known that protein phosphorylation on serine, threonine and tyrosine residues is a major
regulatory post-translational modification in pathogenic bacteria. This reversible post-translational
modification enables the translation of extracellular signals into cellular responses and therewith
adaptation to a steadily changing environment. Consequently, it is of particular interest to gather
precise information about the phosphoproteome of pneumococci. S. pneumoniae encodes a single
Serine/Threonine kinase-phosphatase couple known as StkP-PhpP.
To address the global impact and physiological importance of StkP and PhpP which are closely
linked to the regulation of cell morphology, growth and cell division in S. pneumoniae, proteomics
with an emphasis on phosphorylation and dephosphorylation events on Ser and Thr residues was
applied. Thus, the non-encapsulated pneumococcal D39Δcps strain (WT), a kinase (ΔstkP) and
phosphatase mutant (ΔphpP) were analyzed in in a mass spectrometry based label-free
quantification experiment. The global proteome analysis of the mutants deficient for stkP or phpP
already proved the essential role of StkP-PhpP in the protein regulation of the pneumococcus.
Proteins with significantly altered abundances were detected in diverse functional groups in both
mutants. Noticeable changes in the proteome of the stkP deletion mutant were observed in
metabolic processes such as “Amino acid metabolism” and also in pathways regulating genetic
and environmental information processing like “Transcription” and “Signal transduction”.
Prominent changes in the metabolism of DNA, nucleotides, carbohydrates, cofactors and vitamins
as well as in the categories “Transport and binding proteins” and “Glycan biosynthesis and
metabolism” have been additionally detected in the proteome of the phosphatase mutant. Still, the
quantitative comparison of WT and mutants revealed more significantly altered proteins in ΔphpP
than in ΔstkP. Moreover, the results indicated that the loss of function of PhpP causes an increased
abundance of proteins in the pneumococcal phosphate uptake system Pst. Furthermore, the
obtained quantitative proteomic data revealed an influence of StkP and PhpP on the twocomponent
systems ComDE, LiaRS, CiaRH, and VicRK.
Recent studies of the pneumococcal StkP/PhpP couple demonstrated that both proteins play an
essential role in cell growth, cell division and separation. Growth analyses and the phenotypic
characterization of the mutants by electron-microscopy performed within this work pointed out
that ΔphpP and ΔstkP had different growth characteristics and abnormal cell division and cell
separation. Nevertheless, the morphological effects could not be explained by changes in protein
abundances on a global scale. So, the in-depth analysis of the phosphoproteome was mandatory
to deliver further information of PhpP and StkP and their influence in cell division and
peptidoglycan synthesis by modulating proteins involved in this mechanisms.
For more detailed insights into the activity, targets and target sites of PhpP and StkP the advantages
of phosphopeptide enrichment using titanium dioxide and spectral library based data evaluation
were combined. Indeed, the application of an adapted workflow for phosphoproteome analyses
and the use of a recently constructed broad spectral library, including a large number of
phosphopeptides (504) highly enhanced the reliable and reproducible identification of
phosphorylated proteins in this work.
Finally, already known targets and target sites of StkP and PhpP, detected and described in other
studies using different experimental procedures, have been identified as a proof of principle
applying the mass spectrometry based phosphoproteome approach presented in this work.
Referring to the role of StkP in cell division and cell separation a number of proteins participating
in cell wall synthesis and cell division that are apparently phosphorylated by StkP was identified.
In comparison to StkP, the physiological function and role of the co-expressed phosphatase PhpP
is poorly understood. But, especially the list of previously unknown putative target substrates of
PhpP has been extended remarkably in this work. Among others, five proteins with direct
involvement in cell division (DivIVA, GpsB) and peptidoglycan biosynthesis (MltG, MreC, MacP)
can be found under the new putative targets of PhpP.
All in all, this work provides a complex and comprehensive protein repository of high proteome
coverage of S. pneumoniae D39 including identification of yet unknown serine/threonine/tyrosine
phosphorylation, which might contribute to support various research interests within the scientific
community and will facilitate further investigations of this important human pathogen.
Viral diseases are a threat to bacteria and enormous animals alike. Vaccines are available against several viruses. However, for some viruses, like ASFV, we still lack vaccines, while for others, like IAV, they are not as effective as we need them to be. To a large extent, this is because we do not fully understand the mechanisms conferring antiviral immunity. To improve our understanding of antiviral immunity, we used a model species that is in many immunological aspects closer to humans than the widely used laboratory mice, pigs. In this thesis, pigs were investigated as a potential biomedical model species for viral respiratory infections in humans and as a natural host for viral infections. Both approaches provide valuable insights into aspects of porcine immunology that can either be used as the foundation for translational research or for the design of targeted therapeutics and vaccines for pigs.
Insights into fundamental characteristics of the porcine immune system form the basis for translational studies. Paper I pioneered a detailed characterization of porcine iNKT cells. To make pigs and porcine iNKT cells more available for scientific investigations, we established multicolor flow cytometry analysis platforms that allow for a more detailed investigation of these cells than previously possible. We found porcine iNKT cells circulating in peripheral blood to be a rare population among CD3+ lymphocytes that displays a pre-activated effector state and can be divided into at least three functional subsets. Upon antigenic activation, they proliferated rapidly, secreted pro-inflammatory cytokines, and exerted cytotoxicity. Moreover, we provided first evidence for a role of iNKT cells in porcine IAV and ASFV infections, which we investigated in more detail in paper IV. Central characteristics, i.e., phenotype and functional properties, exhibit a high degree of similarity between humans and pigs. Moreover, differences between human and murine iNKT cells are more pronounced than between humans and pigs.
Based on the results obtained in paper II, the established biomedical model could be used for further studies of infectious respiratory diseases. IAV infections pave the way for secondary co-infections with increased morbidity and lethality. These bactoviral co-infections are a threat to both pigs and humans. The shared susceptibility as well as homologies on the physiological and immunological level make pigs exceptionally suitable animal models for studies of these infections. Paper I and II can also be interpreted under translational aspects. Activation of iNKT cells in porcine vaccination studies showed promising results. Based on these and our findings, this might be a suitable approach for humans as well. Along with other studies, our results suggest that pigs might be a well-suited large animal model for research in infectious diseases. This is true especially for respiratory infections, such as seasonal IAV infections, for which pigs are natural hosts and contribute to viral spread and emergence as “mixing vessels”, which can result in pandemic strains like H1N1pdm09. We could show that porcine iNKT cells as well as the antiviral responses of cTC against H1N1pdm09 in pigs are comparable to human cells and processes. The increased implementation of pigs in basic and applied research might enable an improved translation of scientific knowledge to human and veterinary medicine.
In two further studies, papers III and IV, we investigated T-cell responses during a viral infection, ASF, for which pigs are the only natural hosts. Immune responses were similar after highly and moderately virulent ASFV infection in domestic pigs and wild boar, respectively. However, they differed between both species. Antiviral immunity in domestic pigs was predominantly exerted by αβ T cells, CD8α+ and DP αβ T cells, while the response in wild boar was dominated by γδ T cells, mainly CD8α+ effector cells. Since wild boar show a higher disease severity and lethality, even during infection with moderately virulent ASFV “Estonia2014”, a shift to γδ T cells seems to be detrimental. In contrast, domestic pigs survive infections with moderately virulent ASFV “Estonia2014”, which indicates that CD8α+ or DP αβ T cells confer protection at least in infections with non-highly virulent ASFV strains. Interestingly, in paper V we found higher and prolonged inflammation in domestic pigs, correlating with increased T-cell influx. However, histopathological analyses revealed no direct explanation for the differences in disease progression and lethality in domestic pigs and wild boar. These findings require further studies to elucidate the underlying mechanisms.
The lack of basic data about immunological differences between domestic pigs and wild boar hampers attempts to understand immunity against ASFV. We found differences between both suid subspecies already at steady state and even more prominent during ASFV infections in papers III-V. Most apparently, T-cell responses in wild boar were heavily biased towards γδ T cells, while immune responses in domestic pigs were based on αβ T cells. However, information about even basic characteristics, like the composition, phenotypes, and functional qualities of wild boar’s immune system, is missing. Therefore, essential baseline data must be obtained in order to adequately assess changes in future studies.
Analyses like these reveal major advantages of pigs as a biomedical model. On the one hand, similar to conventional model species, researchers can investigate every tissue at any desired time. Tissue from human patients is often scarce or not at all available, so models that can be investigated at specific times after infection are needed. On the other hand, results obtained in pigs are more comparable to humans than data from murine studies. Moreover, pigs are susceptible to similar pathogens as humans and experimental infections can be investigated without the need for major genetic manipulations. However, there are also limitations of the porcine model system. Analysis tools are not as advanced as they are for mice, especially in terms of availability of mAbs or genetically modified organisms. Still, given the major advantages that become more and more obvious, efforts should be made to make pigs more applicable for basic and translational research. In addition, findings derived from pigs can be used for the species itself. Pigs are a major livestock species and new treatments, or vaccines could also be used for them. Therefore, this research could eventually also improve animal welfare.
In summary, the presented thesis significantly enhanced our knowledge of porcine immune processes for cTC in general and iNKT cells in particular. Results were obtained both at steady state and in the context of IAV and ASFV infections, and thus, made pigs more available as a model for future research. The use of multicolor flow cytometry provided a broad overview of the ongoing immune reactions and enables further, more wide-ranging studies that can also address open questions in even more complex infection scenarios.
Pestivirus-Replikons als Werkzeug für heterologe Genexpression und molekulare Charakterisierung
(2021)
Replikons sind autonom replizierende RNA-Moleküle die nicht in der Lage sind, infektiöse Viren zu bilden. Sie sind wichtige Hilfsmittel zur molekularen Charakterisierung von Viren. Außerdem werden sie erfolgreich als Expressionssystem für Proteine und zur Entwicklung von Impfvektoren eingesetzt. Im Rahmen der vorliegenden Arbeit wurde ein Replikon-basiertes Testsystem für den Nachweis spezifischer Antikörper gegen das atypische porzine Pestivirus (APPV) in Schweineseren etabliert. Auf Basis eines Klons des Virus der bovinen Virusdiarrhoe Typ 1 (BVDV) wurden die ursprünglichen BVDV Glykoproteine E1 und E2 gegen die Glykoproteine des APPV ausgetauscht. Die Expression mittels Replikon gewährleistet die natürliche Konformation der Proteine und damit die Bindung der entsprechenden Antikörper. Dieses System ermöglichte die serologische Untersuchung von 1115 Schweineseren ohne vorherige Isolation oder Zellkulturadaptation des Virus. Mit diesem neu entwickelten System konnte eine Seroprävalenzstudie gestartet und eine hohe Prävalenz von APPV in der untersuchten deutschen Schweinepopulation gezeigt werden.
Im weiteren Verlauf dieser Arbeit wurden Replikons zur Charakterisierung des atypischen Pestivirus Bungowannah Pestivirus (BuPV) eingesetzt. Während die Replikons mit Deletionen der Gene für die einzelnen Strukturproteine C, E1 und E2 oder die gesamte Strukturproteinregion keine Besonderheiten im Vergleich zu bereits untersuchten Pestivirus-Replikons aufwiesen und keine infektiösen Virionen mehr produzieren konnten, zeigten BuPV-Replikons mit ERNS-Deletion die Fähigkeit, zwei weitere Replikationszyklen zu durchlaufen und Zellen zu infizieren, allerdings mit einem sehr deutlichen Wachstumsdefizit. Dieser Defekt scheint in der Virusassemblierung und/oder der Freisetzung aus der Zelle zu liegen. Es konnte somit erstmals gezeigt werden, dass ERNS nicht essentiell für die Bildung infektiöser Bungowannah-Viren ist, jedoch sehr wichtig für eine effiziente Virusvermehrung. Diese Eigenschaft der ERNS deletieren BuPV macht diese besonders interessant als Vektoren für die Entwicklung neuer Replikon-basierter Expressionssysteme und einer Vakzinplattform. ERNS-Deletionsmutanten wurden daher auf ihre Fähigkeit hin untersucht, eine effiziente Expression verschiedener immunogener Proteine zu gewährleisten. Die Konstrukte waren dabei in der Lage, die ausgewählten Proteine effizient zu exprimieren und konnten zudem effizient zu Virus-Replikon-Partikel (VRP) verpackt und in einer trans-komplementierenden Zelllinie vermehrt werden.
Auch der für das parentale Virus beschrieben Zelltropismus konnte für die generierten BuPV-VRP gezeigt werden. Zusätzlich zu den beschriebenen Eigenschaften sind es der nicht-zytopathogene Charakter und die in den meisten Regionen fehlende Immunität gegen BuPV, die das hohe Potential dieses Systems als universellen Vakzinvektor herausstellen.
Zusätzlich wurde im Rahmen dieser Arbeit ein erstes DNA-basiertes System zur Herstellung rekombinanter BuPVs etabliert. Dieses System ermöglicht sowohl die Virusproduktion ausgehend von einem T7-RNA-Polymerase Promotor, als auch von einem Polymerase-II-Promotor. Die infektiösen Viren zeigten gleiche Wachstumseigenschaften wie Viren, welche mit dem konventionellen RNA-System generiert wurden. Auf Basis des neuen DNA-Systems konnte auch ein Replikon mit Deletion im ERNS-Gen etabliert werden. Dieser Klon zeigte nach der Transfektion eine sehr geringe Replikationsrate, konnte jedoch zur weiteren Konstruktion eines „single round infectious particle“ (SRIP) eingesetzt werden. Diese SRIP sind durch die Koexpression des deletierten ERNS in der Lage, sich selbst zu verpacken und bilden damit ein ideales System zum Transport selbst-replizierender RNA. Durch seine selbstlimitierenden Eigenschaften könnte es zur Entwicklung und Etablierung einer effizienten und sicheren Vakzineplattform eingesetzt werden. Allerdings ist dafür eine weiterreichende Optimierung notwendig.
Insgesamt zeigten die Untersuchungen, dass sich pestivirale Replikons sowohl als effizientes und schnelles Testsystem für die Untersuchung der Verbreitung neu auftretender Pestiviren, als auch zur Entwicklung effizienter RNA- und DNA-basierter Transport- und Verpackungssysteme viraler Proteine, eignet.
The spatio-temporal reduction and oxidation of protein thiols is an essential mechanism in signal transduction inall kingdoms of life. Thioredoxin (Trx) family proteins efficiently catalyze thiol-disulfide exchange reactions andthe proteins are widely recognized for their importance in the operation of thiol switches. Trx family proteinshave a broad and at the same time very distinct substrate specificity–a prerequisite for redox switching. Despiteof multiple efforts, the true nature for this specificity is still under debate. Here, we comprehensively compare theclassification/clustering of various redoxins from all domains of life based on their similarity in amino acidsequence, tertiary structure, and their electrostatic properties. We correlate these similarities to the existence ofcommon interaction partners, identified in various previous studies and suggested by proteomic screenings. Theseanalyses confirm that primary and tertiary structure similarity, and thereby all common classification systems, donot correlate to the target specificity of the proteins as thiol-disulfide oxidoreductases. Instead, a number ofexamples clearly demonstrate the importance of electrostatic similarity for their target specificity, independent oftheir belonging to the Trx or glutaredoxin subfamilies
The deep-sea tubewormRiftia pachyptilalacks a digestive system butcompletely relies on bacterial endosymbionts for nutrition. Although the symbionthas been studied in detail on the molecular level, such analyses were unavailable forthe animal host, because sequence information was lacking. To identify host-symbiont interaction mechanisms, we therefore sequenced theRiftiatranscriptome,which served as a basis for comparative metaproteomic analyses of symbiont-containing versus symbiont-free tissues, both under energy-rich and energy-limitedconditions. Our results suggest that metabolic interactions include nutrient alloca-tion from symbiont to host by symbiont digestion and substrate transfer to the sym-biont by abundant host proteins. We furthermore propose thatRiftiamaintains itssymbiont by protecting the bacteria from oxidative damage while also exerting sym-biont population control. Eukaryote-like symbiont proteins might facilitate intracellu-lar symbiont persistence. Energy limitation apparently leads to reduced symbiontbiomass and increased symbiont digestion. Our study provides unprecedented in-sights into host-microbe interactions that shape this highly efficient symbiosis.
Swine are regarded as promising biomedical models, but the dynamics of theirgastrointestinal microbiome have been much less investigated than that of humans or mice. The aimof this study was to establish an integrated multi-omics protocol to investigate the fecal microbiomeof healthy swine. To this end, a preparation and analysis protocol including integrated samplepreparation for meta-omics analyses of deep-frozen feces was developed. Subsequent data integrationlinked microbiome composition with function, and metabolic activity with protein inventories, i.e.,16S rRNA data and expressed proteins, and identified proteins with corresponding metabolites.16S rRNA gene amplicon and metaproteomics analyses revealed a fecal microbiome dominated byPrevotellaceae,Lactobacillaceae,Lachnospiraceae,RuminococcaceaeandClostridiaceae.Similar microbiomecompositions in feces and colon, but not ileum samples, were observed, showing that feces can serveas minimal-invasive proxy for porcine colon microbiomes. Longitudinal dynamics in composition,e.g., temporal decreased abundance ofLactobacillaceaeandStreptococcaceaeduring the experiment,were not reflected in microbiome function. Instead, metaproteomics and metabolomics showed arather stable functional state, as evident from short-chain fatty acids (SCFA) profiles and associatedmetaproteome functions, pointing towards functional redundancy among microbiome constituents.In conclusion, our pipeline generates congruent data from different omics approaches on the taxonomyand functionality of the intestinal microbiome of swine.
Reactive species play an essential role in orchestrating wound healing responses. They act as secondary messengers and drive redox-signaling pathways that are involved in the hemostatic, inflammatory, proliferative and remodeling phases of wound healing. Cold plasma produces a profusion of short- and long-lived redox species that promotes wound healing, however, until today, the knowledge of CAP mediated wound healing remained scarce. In this thesis, CAP mediated wound healing mechanism and their effect on extracellular matrix and adhesion molecules have been investigated. To this end, a keratinocyte cell line (HaCaT), skin fibroblast cell line (GM Fbs) and an in vitro coculture model including both HaCaT and GM Fbs at a 2:1 ratio, were employed to investigate the cross talk between these two skin cell types.
We examined the impact of CAP on extracellular matrix proteins and cell adhesion molecules in GM Fbs and observed a significant impact of cold plasma treatment on the expression level of collagen moieties, cell adhesion molecule like integrin, cadherin, versican, MMPs as well as extracellular matrix proteins.
Moreover, scratch assays with monocultures of HaCaT, GM Fbs and coculture of these two cell types were performed. We detected that, CAP accelerated the migratory capability of HaCaT cells cocultured with fibroblasts. In fact, compared to HaCaT monoculture, a significant acceleration on cell migration was observed in coculture upon CAP treatment. NAC, a potent antioxidant could abrogate this CAP-stimulated cell migration in coculture, further pointing towards the importance of well-orchestrated reactive species in wound healing. To better understand this CAP-mediated effect on cell migration, we examined the signaling pathways involved in tissue homeostasis and regeneration. We checked the HIPPO signaling pathway and observed an upregulation of several signaling molecules at transcriptional level in GM Fbs upon CAP treatment.
YAP is the central nuclear executer of HIPPO signaling pathway. YAP was upregulated in both HaCaT cells and GM Fbs. The major downstream effectors of the HIPPO signaling pathway (CTGF and Cyr61) were also upregulated in dermal fibroblasts at both transcriptional and protein level. However, administration of antioxidant NAC inhibited CAP-mediated wound healing and abrogated the gene expression of the HIPPO downstream effectors. These results confirm that the upregulation of YAP-CTGF-CYR61 axis is due to CAP-generated redox species. In HaCaT cells, both CTGF and Cyr61 was minimally transcribed. Even though CTGF was rarely detected in HaCaT cells on the protein level,Cyr61 remained undetected. This again shows the importance of the cross talk between fibroblasts and keratinocytes.
The coculture with the inclusion of fibroblasts showed an accelerated migration rate, compared to HaCaT monoculture which specifies a cross talk between these two cell types. Thus, monoculture of HaCaT cells were incubated with CAP-treated and untreated fibroblast conditioned medium. Interestingly, we observed that HaCaT cells exhibited an improved cell migration rate when incubated with CAP-treated fibroblast-conditioned media compared to that observed after incubation with untreated media. Upon investigation, an induction of CTGF and Cyr61 secretion was observed upon CAP treatment in the fibroblast-conditioned media. Furthermore, exposure to recombinant CTGF and Cyr61 could also significantly improve HaCaT cell migration which confirms that CAP mediated accelerated cell migration is due to activation of YAP-CTGF-Cyr61 axis.
In conclusion, this study revealed a completely new mechanical insight of CAP mediated wound healing. Along with several other ECM molecules, CAP activates a regenerative signaling pathway i.e., HIPPO signaling pathway in dermal fibroblasts at the onset of wound healing. Dermal fibroblasts drive a paracrine interaction by secreting CTGF and Cyr61 in close vicinity of wound, resulting in accelerated keratinocyte migration and wound healing in coculture.
Lipoproteins of Staphylococcus aureus represent a major class of surface proteins, which are anchored to the outer leaflet of the cell membrane. Although they play a key role in the immune response and virulence, the majority of lipoproteins in this organism is still of unknown function. The aim of our study was to investigate the function of so far poorly or uncharacterized lipoproteins in S. aureus strain Newman. To this end, an integrated bioinformatical approach was applied to define the pan-lipoproteome of 123 completely sequenced S. aureus strains. In total, this analysis predicted 192 different potential lipoproteins, with a core lipoproteome of 39 and a variable lipoproteome of 153 lipoproteins. Out of those 192 lipoproteins, 141 are so far functionally uncharacterized. Primarily focusing on members of the core-lipoproteome with unknown or poorly characterized function, 24 lipoproteins or co-encoded neighbor proteins were selected for further characterization. Of those 24 proteins, 20 S. aureus markerless deletion mutants were constructed (S. aureus delta l01 - delta l20) and screened for an altered growth behavior under various conditions. Here, three mutants showed a temperature-sensitive phenotype, two mutants formed aggregates in the TSB of the manufacturer Merck (TSBMerck), and four mutants showed reduced growth under osmotic stress with 8% NaCl. An altered aggregation behavior was observed for four mutants in the presence of Triton X-100 and for eleven mutants in the presence of SDS. Furthermore, ten mutants revealed an impaired biofilm formation capacity as well as reduced hemolytic activity. Interestingly, S. aureus deletion mutants delta l14 (delta NWMN_1435) and delta l16 (delta NWMN_0646) showed an altered phenotype under nearly all tested growth and stress conditions. Most strikingly, both deletion mutants demonstrated dramatic defects in cell morphology and cell division during the transient growth phase in TSBMerck and were therefore selected for further detailed characterization. Electron microscopy imaging of the two mutants revealed an irregular cell shape, increased cell size, multiple displaced division septa, and incomplete separation of daughter cells resulting in the formation of cell aggregates in TSBMerck. Complementarily, microarray-based transcriptome analysis and whole-genome sequencing of S. aureus delta l14 and delta l16 suppressor mutants strongly point to a functional association of both lipoproteins with cell envelope- or cell division-related processes. Specifically, multiple hints suggest a functional connection of both lipoproteins with lipo- or wall teichoic acids. Of note, the phenotypes of S. aureus delta l14 and delta l16 are conditional and appear under some, but not all growth conditions. Thus, it is conceivable that the function of L14 and L16 is modulated by metabolic processes, or that the proteins might be part of a “backup system” becoming important only under certain conditions. Collectively, we propose that L14 and L16 fulfill a basic role in cell envelope- or cell division-related processes under specific growth conditions. Particularly, the activity of L14 and L16 might be necessary for the function or localization of lipo- or wall teichoic acids, and thus, might be linked to the regulation of autolysins. In conclusion, this study reveals important insights into the function of two so far uncharacterized but highly conserved lipoproteins in S. aureus.